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NEO-RIEMANNIAN OPERATIONS, 

PARSIMONIOUS TRICHORDS, AND 

THEIR TONNETZ REPRESENTATIONS 

Richard Cohn 

1. The Over-Determined Triad 

In work published in the 1980s, David Lewin proposed to model rela- 
tions between triads' using operations adapted from the writings of the 
turn-of-the-century theorist Hugo Riemann.2 Subsequent work along 
neo-Riemannian lines has focused on three operations that maximize 
pitch-class intersection between pairs of distinct triads: P (for Parallel), 
which relates triads that share a common fifth; L (for Leading-tone 
exchange), which relates triads that share a common minor third; and R 
(for Relative), which relates triads that share a common major third.3 Fig- 
ure 1 illustrates the three operations, which I shall refer to collectively as 
the PLR family, as they act on a C minor triad, mapping it to three dif- 
ferent major triads. (Throughout this paper, + and - are used to denote 
major and minor triads, respectively.) Singly applied, each PLR-family 
operation inverts a triad (major -- minor). Doubly applied, each PLR- 
family operation maps a triad to its identity; i.e., each is an involution. 

A striking feature of PLR-family operations is their parsimonious 
voice-leading.4 To a degree, parsimony is inherent to the PLR family, 
whose defining feature is double common-tone retention. What is not in- 
herent is the incremental motion of the third voice, which proceeds by 
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Figure 1: The PLR-Family of C-Minor 
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Figure 2: The PLR-Family of {0, 1, 5} 

semitone in the case of P and L, and by whole tone in the case of R. This 
feature is not without significance to the development of a musical cul- 
ture where conjunct voice-leading in general, and semitonal voice-lead- 
ing in particular, are enduring norms through an impressive range of 
chronological eras and musical styles.5 The parsimony of PLR-family 
voice-leading is so engrained in the procedural knowledge of a musician 
trained in the European classical tradition that it hardly seems to warrant 
notice, much less scrutiny. It is scrutinized here with the aim of demon- 
strating that, from a certain point of view, the feature is fortuitous. 

In order to cultivate this point of view, imagine a musical culture where 
set-class 3-4 (015) was the privileged harmony to the extent that the triad 
prevails in European music c. 1500-1900. For any member of set-class 
3-4, there are three other members with which it shares two common pcs. 
Figure 2 leads the prime form of 3-4 to its three double-common-tone 
related peers. Note the magnitude of the moving voice: in two cases by 
minor third, in the third case by tritone. Such a culture would be inca- 
pable of achieving the degree of voice-leading parsimony characteristic 
of triadic music, particularly as it developed in the nineteenth century. It 
can be easily verified, and will be demonstrated shortly, that replication 
of the exercise using any other mod-12 trichord-class yields similarly 
unparsimonious results.6 

It may come as no surprise that, among trichord-classes, consonant tri- 
ads are special. Their unique acoustic properties are well established, and 
indeed are fundamental to standard approaches to triadic music. The 
potential of consonant triads to engage in parsimonious voice-leading, 
however, is unrelated to those acoustic properties. This potential is, 
rather, a function of their group-theoretic properties as equally tempered 
entities modulo-12. 

To demonstrate this claim, the definition of PLR-family operations is 
now generalized, initially to the prime forms of set-classes defined by 
TI/TnI equivalence, subsequently to all trichords. Although our primary 
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attention will be focused on trichords in the usual chromatic system of 
twelve pitch-classes, the definition is open to application to other systems 
as well, for reasons that will emerge as the exposition unfolds. 

DEE (1). c is a positive integer representing the cardinality of a chro- 
matic system. 

DEE (2). Q is a mod-c trichord {0, x, x + y) such that 0 < x < y < c - 
(x + y). 

The condition insures that Q is the prime form of its trichord-class. 

DEF. (3) Iu is the inversion that maps pitch-classes v and u to each 
other.7 

The three PLR-family operations can now be defined on a prime-form tri- 
chord Q = (0, x, x + y} as follows: 

DEF. (4a) P = I+y DEF.(4b) L = Ix DEF.(4c) R = IX+y 

Figure 3a (p. 4) demonstrates the mapping of abstract pitch-classes 
when P, L, and R act on the abstract trichordal prime form Q. Figures 3b 
and 3c realize Q as the two trichords explored in Figures 1 and 2. Each 
operation swaps two of the pitch-classes in Q. The remaining pc is 
mapped outside of Q, and this mapping is perceived as the "moving 
voice." We now define a set of variables, p, /, and ,, which express the 
magnitude of those external mappings as mod-c transpositional values. 

x- y, hence: h0--c -2x + y, hence: 
DEE (5a) p = y - x DEE (5b) l = -2y - x DEE (5c) , = 2x + y 

Observe that p + I + = 0, since (y - x) + (-2y - x) + (2x + y) = (2x - 2x) 
+ (2y - 2y) = 0. 

The values of , l, and , are now linked to the structure of trichord Q. 
First, following Bacon (1917), Chrisman (1971), and others since, we 
define a step-interval series as follows: 

DEF (6). The step-interval series for a normal-order trichord {i,j,k} 
is the ordered set <j-i, k-j, i-k>, modulo c. 

Via Def. (2), Q = {0, x, x+ y} is in prime form, which presupposes nor- 
mal order. Thus the step-interval series of Q is <x, y, - (x + y)>. 
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Figure 3: PLR-Family Mappings 
(a) for Q = {0, x, x + y} 

P(Q)= 17(Q) L(Q)= I 3(Q) R(Q)= 17(Q) 

7 ->0 7-8 7->3 
3 - 4 3 ->0 3-> 7 
0- 7 0- 3 0 -10 

Figure 3: PLR-Family Mappings 
(b) for C-Minor; x = 3, y = 4, Q = {0, 3, 7} 

P(Q) = I 5 (Q) L(Q) = I o (Q) R(Q) = I 5 (Q) 

5 ---> 0 5 -> 8 5 -1 
1->4 1 -0 1 5 
0-->5 0-> 1 0-6 

Figure 3: PLR-Family Mappings 
(c)x= ,y=4,Q ={0, 1,5} 

The following theorem states that p, I, and , are each equivalent to the 
differences between a distinct pair of step-intervals. 

THEOREM 1. For a prime-form trichord Q = {0, x, x + y with step- 
intervals <x, y, - (x + y)>, 
1.1) p is the difference between the first and second step interval, 

y - x. Proof: y - x = p via Def. (5a). 
1.2) l is the difference between the second and third step interval, 

- (x+y) - y. Proof: - (x+y) - y = - 2y - x = / via Def. (5b). 
1.3) , is the difference between the third and first step interval, 

x - (-(x+y)). Proof: x - (- (x+y)) = 2x + y = , via Def. (5c). 

Theorem 1 facilitates calculation of the values of , l, and 4 for any tri- 
chordal prime form in a chromatic system of any size. The results of 
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these calculations for the mod- 12 trichordal prime forms are given in Fig- 
ure 4 (p. 6). Conjunct intervals are enclosed in boxes. The figure demon- 
strates what was asserted above: that 037 is unique among trichordal 
prime forms (modulo 12) in its preservation of conjunct melodic inter- 
vals when any of the three PLR-family operations is executed.8 

The generalization from prime form to other class members is easily 
carried out. Calculate the Tn or TnI of the trichord in relation to the prime 
form of its class, reassign 0 to the pitch-class that had been formerly 
assigned the integer n, and reassign the integers in ascent or descent from 
the new pitch-class 0, depending on whether the trichord is Tn or TnI- 
related to the prime form. Then apply the operations as in definition (4). 
If Tn-related to the prime form, the values of 2, l, and ', are the same as 
when the operation acts on the prime form; if TnI-related, the values are 
inverted. (This follows from the involutional nature of PLR-family oper- 
ations.) In either case, the magnitudes are invariant. Consequently, the 
unique characteristic noted above for trichordal prime form {037} gen- 
eralizes to all members of its set-class. 

To summarize our findings so far: (1) Among mod-12 trichords, the 
consonant triad alone is susceptible to parsimonious voice-leading under 
the three PLR-family operations; (2) This circumstance is a function of 
the trichord's step-interval sizes, which are an aspect of its internal struc- 
ture; (3) the optimal voice-leading properties of triads therefore stand in 
incidental relation to their optimal acoustic properties. 

In a word: the triad is over-determined. 
The fortuitous relation of the consonant triad's voice-leading parsi- 

mony to its acoustic generability is as profound to the development of the 
European musical tradition as other sorts of over-determination that were 
first brought to light at Princeton in the 1960s (Babbitt 1965, Gamer 
1967, Boretz 1970): of the chromatic division of the octave into twelve 
parts, 12 being at once the smallest abundant integer and the smallest 
integer n such that 3 approximates some power of 2; of the proximity of 
the perfect fifth's - geometric division of the octave (the source of its 
acoustic power) to its I arithmetic division of the octave (a fraction 
whose irreducibility, rare for its divisor, is necessary for the deep-scale 
property of diatonic collections, a circumstance which in turn leads to 
the graded common-tone distribution of the set of diatonic collections 
under transposition, and hence to the system of key signatures). Equally 
remarkable is the extent to which the triad's acoustic properties have 
masked recognition of its group-theoretic potential.9 Our sensibilities, 
born of incessant exposure to a musical tradition that habitually imple- 
ments the acoustic properties of triads, as well as to a music-theoretic tra- 
dition that habitually models this habitual implementation, have been 
trained to resist by default any effort to regard the triad as anything other 
than acoustic in essence. Like the stock figure of the Cold War spy 
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prime form step-intervals p I r 

(0,x, x+ y) <x, y, -(x+ y)> y -x -2y -x 2x +y 

(0,1,2) <1,1,10> 0 9 3 

(0,1,3) < 1,2,9> FW 7 4 

{0,1,4) < 1,3,8> [_15 5 

{0,1,5) < 1,4,7> 3 3 6 

(0,1,6) < 1,5,6> 4 FiW 

(0,2,41 <2,2,8> 0 6 6 

10,2,5) <2,3,7> WI 4 7 

(0,2,61 <2,4,6> R 8 

(0,2,7) <2,5,5> 3 0 9 

{0,3,6} <3,3,6> 0 3 9 

(0,3,7). <3,4,5> ww1 

10,4,81 <4,4,4> 0 0 0 

Figure 4: Values of p, 1, and r for trichordal prime forms 
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Figure 5: Two Tonnetze 
(a) from Euler 1926 (1739) 

thriller, the dazzling beauty of the triad has blinded us to its substantial 
intellectual resources. 

2.1. The Over-Determined Tonnetz 

The two-dimensional matrix known as the table of consonant (or 
tonal) relations (Verwandtschaftsverhiltnistabelle) or harmonic network 
(Tonnetz, Tongewebe) has long presented music theorists with a useful 
graphic instrument for representing triadic progressions. Although the 
matrix originated in response to the acoustic properties of triads, it 
responds in equal measure to their group-theoretic properties. The over- 
determination of the triad is thus encoded in the over-determination of 
the Tonnetz. 

The Tonnetz was initially conceived to reconcile the first two distinct 
(non-complementary) sub-octave intervals generated from a resonating 
body.10 Leonhard Euler (1926 [1739]) situated justly tuned versions of the 
twelve pitch classes on a bounded 4x3 matrix whose axes are generated 
by acoustically pure fifths (3:2) and major thirds (5:4) (Figure 5a)." 
Arthur von Oettingen (1866, 15) inverted Euler's matrix about the hori- 
zontal axis, and projected it onto an infinite plane, as shown in Figure 5b 
(p. 8). (The slashes represent syntonic comma adjustments, and result 
from Oettingen's sensitivity to the just-intonational distinctions masked 
by notational and letter-name equivalence.) This version of the pitch-class 
table was appropriated by Riemann, became widely disseminated through 
his writings, and has been passed down by generations of German har- 
monic theorists leading all the way up to the present day (see Imig 1970, 
Harrison 1994). 
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2 c g d a e h fis cis gis dis ais eis his fisis cisis gisis disis 

1 as es b f c g d a e h fis cis gis dis ais eis his 

0 fes ces ges des as es b f c g d a e h fis cis gis 

-1 deses asas eses bb fes ces ges des as es b f c g d a e 

-2 bbb feses ceses geses deses asas eses bb fes ces ges des as es b f c 

Figure 5: Two Tonnetze 
(b) from Oettingen 1866 



The position of major and minor triads on the matrix was first observed 
by Euler (1926 [1773], 585), who noted that they could be represented on 
his matrix by the conjunction of two perpendicular line-segments. Oet- 
tingen, less concerned than Euler about the acoustically residual status of 
the minor third, suggested adding a hypotenuse to close the structure to 
a right triangle (1866, 17). This move brings PLR-family relations to the 
forefront, since triads so related are represented by triangles that share an 
edge, and are thereby maximally proximate. One might infer from this 
circumstance that PLR-family operations would be the vehicle of choice 
for navigating triadic progressions on the Tonnetz, but this has not been 
the case historically. The development of Oettingen's table as a "game- 
board" for mapping progressions among triads was instead guided by 
convictions about the acoustic, tonally centric status of consonant triads 
and their relations to each other. This resulted in the subordination of 
PLR-family relations to the Tonic/Subdominant/Dominant (TSD) "func- 
tional" framework developed by Riemann in the 1890s, a framework that 
has continued to dominate Northern European harmonic theory ever 
since. 12 

The mapping of PLR-family operations independently of the TSD 
framework was first proposed by Lewin (1987, 175-180) and has been 
developed by Brian Hyer (1989, 1995), whose work demonstrates the 
heuristic value of charting PLR-family operations on the Tonnetz without 
necessary recourse to assumptions about tonal centers, TSD-functional 
relations, or the acoustic properties of triads. The emphasis on PLR-fam- 
ily operations in the work of Lewin and Hyer is apparently motivated 
empirically by the desire to model characteristically late-Romantic pro- 
gressions in a manner that is faithful to the musical qualities that they are 
perceived to project. The focus on voice-leading parsimony cultivated in 
Section 1 above suggests a complementary deductive-rationalist motiva- 
tion for liberating the triad, PLR-family operations, and their Tonnetz 
representation from their acoustic origins. 

It is this motivation that directs the remaining program for this paper. 
In the material that follows immediately, a version of the Tonnetz of Oet- 
tingen and Riemann is situated within a genus and species of two-dimen- 
sional matrices. The defining characteristic of the genus is that pairs of 
trichords represented by adjacent triangles are related by PLR-family 
operations, as broadly defined in Section 1 above (cf. Def. (4)). The 
defining characteristic of the species is that pairs of trichords represented 
by adjacent triangles feature parsimonious voice-leading. Section 2.4 
refines the conception of the Oettingen/Riemann matrix, and of the 
species that it represents, by acknowledging the toroidal geometry that 
underlies them when their contents and relations are interpreted in the 
context of equal temperament. The focus on the Tonnetz throughout Sec- 
tion 2 serves as a large structural upbeat to Section 3, the musical core of 
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-2x + 2y -x + 2y 2y x + 2y 2x + 2y 

-2x +y, -x + y y x+y 2x + y 

-2x -x 0 x 2x 

-2x- y -x- y -y x- y 2x- y 

/T-2y(Q) 
-2x - 2y -x - 2y -2y x - 2y - 2x- 2y 

Figure 6: The Abstract Tonnetz 

the paper, which uses PLR-family operations to navigate the Tonnetz, in 
its various versions at various degrees along the abstraction/specification 
continuum. 

2.2. The Generic Tonnetz 

Our investigation of the Tonnetz of harmonic theory initially situates it 
as a member of an infinite class of two-dimensional matrices whose 
generic form is presented in Figure 6. The primary axes of Figure 6 are 
generated by the generic intervals x and y, in the sense that each row 
increments from left to right by the value of x, and each column incre- 
ments from bottom to top by the value of y. The figure should be inter- 
preted as projecting its structure beyond its boundaries. The elements of 
Figure 6 represent real numbers as they increment to infinity, and should 
not be interpreted in the context of the closed modular systems that were 
the focus of our previous work. Figure 6 is neither more nor less than the 
Cartesian coordinate plane of analytic geometry. 

In terms of Def. (2), the primary axes of Figure 6 are interpreted as the 
smallest two step-intervals of a prime form trichord Q = { 0, x, x+y } with 
step-intervals <x, y, -(x+y)>. The remaining step-interval is the inverse of 
the sum of the two smaller step-intervals, and hence generates the diag- 
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onal which runs from northeast to southwest, in the sense that each such 
diagonal decrements, sloping southwestward, by x+y. 

Figure 6 represents trichord Q as a darkly bordered triangle at its cen- 
ter. Each vertex of the triangle represents a pitch or pitch-class,13 and each 
edge a dyadic subset, of Q. Any geometric translation of this triangle- 
that is, any triangle whose hypotenuse subtends northwest of the right 
angle-represents a pitch or pitch-class transposition of Q. (An example, 
labeled TX2y (Q), is provided by the isolated triangle in the southeast cor- 
ner of Figure 6.) Furthermore, any geometric inversion of the Q triangle 
about a secondary diagonal-that is, any triangle whose hypotenuse sub- 
tends southeast of the right angle-represents a pitch or pitch-class 
inversion of Q. Figure 6 indicates three such inverted triangles, all shar- 
ing an edge with the central triangle. These three triangles represent the 
PLR-family of Q (cf. Figure 3a). The unique edge that the central trian- 
gle shares with each of its adjacent triangles represents the unique dyad 
that trichord Q shares with each member of its PLR-family. 

Figure 7 replicates the core of Figure 6 and adds three arrows, each 
labeled with one of the voice-leading variables from Def. (5). Each arrow 
represents the magnitude of the moving voice when Q is subject to a 
PLR-family operation: 

* labels x-y when P takes 0, x, x + y} to 0, y, x + y across their 
shared hypotenuse; 

* labels x + y - -y when L takes (0, x, x + y} to {0, x, - y} across 
their shared horizontal edge; 

*?, labels 0 - 2x + y when R takes {0, x, x + y} to {2x + y, x, x + y} 
across their shared vertical edge. 

When the same operations are enacted on other members of trichord- 
class Q, their geometric orientation on Figure 7 is invariant. In all cases, 
P-related triads share a hypotenuse, and a executes a pawn-capture along 
the main diagonal; L-related triads share a horizontal edge, and I exe- 
cutes a knight's move, a displacement by two rows and one column; R- 
related triads share a vertical edge, and , executes a knight's move, a dis- 
placement by two columns and one row. The magnitudes of p, I, and , are 
likewise invariant, although when the object of the mapping is a triad TJI- 
related to the prime form, the direction of the arrow reverses, and the val- 
ues of a, I, and 4 invert. 

The unbounded grid inferable from Figure 6 is applicable to pitches 
and intervals in a variety of ways. If x and y are assigned to acoustically 
pure intervals (as in Euler, etc.), or to intervals in pitch-space, then the 
structure implicitly projects into an infinite plane. The realizations of the 
Figure 6 grid that will hold our focus are generated by equally tempered 
intervals in some modular system, where the modular congruence repre- 
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2x 

x-y 2x-y 

Figure 7: Tonnetz Representation of 
PLR-Family Operations on Q = {0, x, x + y 

sents octave equivalence. In such interpretations, both x and y axes 
become cyclic rather than linear, and the plane inferred from Figure 6 
therefore projects into itself as a torus.14 These cyclic features will be 
studied in some detail in Section 2.4 below. 

2.3. The Parsimonious Tonnetz 

In Figure 7, PLR-family operations are only associated with voice- 
leading parsimony in the restricted sense that each operation preserves 
two common tones. The degree of parsimony associated with the third 
voice depends on the magnitudes of ?, I and 4, which in turn depend on 
the values of x and y, as yet unassigned. Furthermore, the interpretation 
of that magnitude as representing an interval-class in a modular pitch- 
class system depends on the imposition of a congruence, i.e. a specific 
value for c. The first section of this paper established that, where c = 12, 
the three PLR-family operations are parsimonious only when x = 3 and 
y = 4, i.e when the trichord-class is the consonant triad, in which case the 
generic Tonnetz is realized as an equal-tempered version of the Oettin- 
gen/Riemann Tonnetz of Figure 5b. Since this is the case of historical and 
analytical interest, it will soon be subject to detailed scrutiny. First, how- 
ever, it will be instructive to consider a structure of intermediate abstrac- 
tion; a "middleground" Tonnetz that "composes out" Figure 6 in a partic- 
ular way, at the same time as it positions the properties of the Oettingen/ 
Riemann Tonnetz in a general context. 

What values of c, x, and y will lead to optimally parsimonious voice- 
leading when PLR-family operations are executed? Intuitively, the de- 
gree of parsimony is optimal when the magnitudes (i.e. absolute values) 
of the voice-leading intervals z, I and 4 are as small as possible, but 
greater than zero. (The last condition insures that voice-leading "motion" 
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is perceptible as such; cf. note 6.) Ideal parsimony, then, would be 
achieved when p = ? 1, = ? 1, and = ? 1. But this combination is impos- 
sible. As observed in Section 1, p + l + - = 0, and so each variable is the 
inverse of the sum of the other two. Consequently, ?, l, and e must in this 
case have identical directions as well as magnitudes, and so z = l = . Via 
Defs. (5b) and (5c), if I = 4 then - 2y - x = 2x + y, and so 3x = - 3y, hence 
x = - y, which implies that y - x is even. Thus p is even (via Def. (5a)), 
and so p ? ? 1, contrary to what was stipulated. 

The next recourse is to increment the magnitude of one of the voice- 
leading variables. In principle, any of the three variables can be incre- 
mented, but Q is in prime form (cf. Def. 2) only if p = 1, I = 1, 4 = -2. 
These are exactly the values for the familiar case of the consonant triad 
modulo 12. Once we cease to assume a chromatic system of twelve pitch- 
classes, as we did in section 1, what other combinations lead to these val- 
ues of , 1, and 4? This problem is easily solved using Theorem 1, which 
linked the voice-leading intervals to step-interval differences. If the first 
step interval is x, and = 1, then the second step interval is x + 1, via The- 
orem 1.1. Further, since I = 1, then the third step interval is x + 2, via The- 
orem 1.2. The three step intervals of a parsimonious trichord, then, must 
form the ascending consecutive series <x, x + 1, x + 2>. 5 

The sum of these three step intervals is 3x + 3, distributed as 3(x + 1). 
Since c, the number of pitch-classes in the system, is the sum of the step- 
intervals, it follows that parsimonious trichords are only available if c is 
an integral multiple of 3. In each such system, there is a single step-inter- 
val series of the form <x, x + 1, x + 2> that represents a parsimonious tri- 
chord-class whose prime form is (0, x, 2x + 1 }. The generic version of 
such a trichord will be represented using the variable Q': 

DEE (7). Q' = {0, x, 2x + 1 }, modulo 3x + 3 

Figure 8 (p. 14) presents a generic Tonnetz for parsimonious trichords, 
which will be referred to as the parsimonious Tonnetz for short. The 
axes of Figure 8 are generated by x and x + 1, the smallest step-intervals 
in Q'. A modular congruence of 3x + 3 is imposed on the figure, so that 
the first term of each expression is represented as a non-negative value. 
The trichordal prime-form Q' = I0, x, 2x + 1 } is portrayed along with its 
PLR family at the center of Figure 8 . The arrows depict the following: 

* labels the T1 motion x - x + 1 when P takes (0, x, 2x + 1 } to {0, 
x + 1, 2x + 1 } across their shared hypotenuse; 

* labels the T1 motion 2x + 1 - 2x + 2 when L takes {0, x, 2x + 1} 
to {0, x, 2x + 2} across their shared horizontal edge; 
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x+3 2x + 3 0 x 2x 3x 

2 x+2 2x + 2 3x + 2 x- 2x- 

2x+4 1 x + I 2x+ I 3x+ l 
/',"P I / 

I I 

x+3 2x + 3 0 2x 

I 

2 x+2 2x + 2 3x + 2 x- l 

2x +4 

x-2 

3x 

2x- 1 

1 x+ 1 2x+ 1 3x+ 1 x-2 

x+3 2x + 3 0 x 2x 3x 

Figure 8: The Parsimonious Tonnetz 

* ? labels the T_2 motion 0 - 3x + 1 - -2 when R takes 10, x, 2x + 1 
to {3x + 1, x, 2x + 1 across their shared vertical edge. 

Figure 8 is a powerful representation of parsimonious trichordal 
motion. No matter what value is assigned to x, any local triangle with a 
southwest/northeast hypotenuse represents a parsimonious trichord. Con- 
versely, all parsimonious trichords are representable through a realization 
of Figure 8. To investigate the scope of this power, we now explore three 
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Figure 9: Three Realizations of the Parsimonious Tonnetz. 
(a) x = 3, y = 4, c = 12, Q' = {0, 3, 7} modulo 12 

(Oettingen / Riemann Tonnetz) 

such realizations, for x = 3, 5, and 7 respectively. In each of the three 
matrices that comprise Figure 9, the abstract expressions of Figure 8 are 
retained along with their realizations so that derivations can be easily 
traced. 

Figure 9a is a version of the Oettingen/Riemann Tonnetz. It partially 
rotates Figure 5b, replacing pitch-class names with integers. The series 
of major thirds is retained on the y axis, but the series of minor thirds is 
displaced from the northwest/southeast diagonal of Figure 5b to the x axis 
of Figure 9a, thereby shifting the series of perfect fifths from the x axis 
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Figure 9: Three Realizations of the Parsimonious Tonnetz. 
(b) x = 5, y = 6, c = 18, Q'= {0, 5,11} modulo 18 

to the southwest/northeast diagonal. This particular version of the Ton- 
netz actually antedates Oettingen: it was first introduced by Carl Friedrich 
Weitzmann in 1853, although in a bounded form (as in Fig. 5a), and using 
staff-notated pitches rather than integers.16 The triangular complex at the 
center of Figure 9a portrays the trichordal prime form, {0, 3, 7 = C minor, 
together with its PLR family. The arrows represent the following: 
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* p labels the T, semitonal motion 3 - 4 = Eb - E when P takes {0, 
3, 7} = C minor to {0, 4, 7} = C major across their shared 
hypotenuse; 

* l labels the Ti semitonal motion 7 - 8 = G - Al when L takes (0, 
3, 7 = C minor to {0, 3, 8} = Ab major across their shared horizon- 
tal edge; 

* a labels the T0lo T_2 whole-step motion 0 - 10 = C - B when R 
takes {0, 3, 7} = C minor to { 10, 3, 7} = El major across their shared 
vertical edge. 

In Figure 9b, the parsimonious trichord is Q' = {0, 5, 11} in a modulo 
18 ("third-tone") system, with step-intervals <5, 6, 7>. The triangular 
complex at the center of Figure 9b portrays 10, 5, 11 } together with the 
three trichords that comprise its PLR family. The arrows portray the fol- 
lowing: 

* labels the T, motion 5 - 6 when P takes {0, 5, 11} to (0, 6, 11} 
across their shared hypotenuse; 

*?labels the T1 motion 11 -12 when L takes {0,5, 11} to {0, 5, 12} 
across their shared horizontal edge; 

*-z labels the T16 = T_2 motion 0- 16 when R takes {0,5, 11 to 16, 
5, 11 across their shared vertical edge. 

In Figure 9c (p. 18), the parsimonious trichord is Q' = {0, 7, 15} in a 
modulo 24 ("quarter-tone") system, with step-intervals <7, 8, 9>. The tri- 
angular complex at the center of Figure 9c portrays {0, 7, 15} together 
with the three trichords that form its PLR family. The arrows portray the 
following: 

* labels the T1 motion 7 - 8 when P takes (0, 7, 15} to {0, 8, 15} 
across their shared hypotenuse; 

* labels the Tl motion 15 16 when L takes {0, 7, 15) to {0, 7, 16} 
across their shared horizontal edge; 

* labels the T22 r T-2 motion 0- 22 when R takes {0, 7, 15} to {22, 
7, 15) across their shared vertical edge. 

2.4. The Toroidal Tonnetz 

Before navigating the Tonnetze, we need to confront their limitation as 
a representation of pitch-class relations in equal temperament. In Figures 
8 and 9, pitch-classes occur in multiple locations, obscuring their equiv- 
alence. Alternatively representing each pitch-class at a single location, as 
in Figure 5a, has the equally pernicious consequence of obscuring adja- 
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Figure 9: Three Realizations of the Parsimonious Tonnetz. 
(c) x = 7, y = 8, c = 24, Q'= {0, 7, 151 modulo 24 

cency relationships, causing axes to float off the edge of the two-dimen- 
sional surface only to reappear on the opposite edge. These obscurities 
result artificially from the mismatch between the cyclical nature of pitch- 
class space and the flat surface of the printed page. A torus presents a geo- 
metric figure more appropriate to representing the cyclic properties of 
equal-tempered pitch-class. Although the torus is eschewed here because 
it is difficult to render and interpret on the two-dimensional surface of the 
page, its underlying status needs to be sufficiently acknowledged before 
the Tonnetz can be navigated with full comprehension. 
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At issue above all is the cyclic periodicities of the axes, which fluctu- 
ate according to the generating intervals and the cardinality of the chro- 
matic system. The axes relevant to Tonnetz navigation are the three that 
are generated by step-intervals of the parsimonious trichord. These in- 
clude not only the primary x and y axes, but also the -(x + y) axis that 
generates the southwest/northeast diagonal. Assigning an abbreviated 
variable to this step-interval will simplify our treatment of the axis-cycle 
generated by it. 

DEF. (8). z = c - (x + y). 

All three step-interval-generated axes are circularized by equal tem- 
perament, and thus will be referred to as axis/cycles. 

Our study of the periodicity of axis/cycles will be aided by putting into 
play a variable q*, representing the periodicity of step-interval q modulo 
c. 

DEF. (9). q* = cc where gcd(c,q), the greatest common divi- 
gcd(c,q) ' 

sor of c and q, is the largest integer j such that c and 9 are positive 
integers. J J 

The asterisk is attachable to any variable that represents a step-inter- 
val; hence x* is the periodicity of x modulo c, and so forth. 

There are two general cases."7 If q and c are co-prime, then gcd(c,q) = 
1, in which case q* = c. The q cycle then exhausts the chromatic system, 
and all cycles along the q axis are identical; in effect, there is a single q 
axis-cycle. A familiar example is presented by the z axis of Figure 9a 
(p. 15), where c = 12 and z = 5. gcd(12,5) = 1, and so z* = c = 12. (The 
12-periodicity cannot be directly verified on the attenuated representa- 
tion of the z-axis given in Figure 9a, but must be induced by extending 
the boundaries of the figure.) All z axes in Figure 9a thus have a period- 
icity of 12, and exhaust the 12 pitch-classes via the "circle of fifths." Thus 
there is only a single distinct z axis-cycle. 

In the second general case, gcd(c,q) > 1, in which case q* < c. The q 
axis does not exhaust the chromatic system, but instead runs through 
some proper subset of its pcs. The pcs modulo c are then partitioned into 
gcd(c,q) = c co-cycles (provided that 1 is the greatest common divi- 
sor of the three step-intervals in Q, as is indeed true for all cases relevant 
to this study). An example is presented by the z axis of Figure 9c, where 
c = 24 and z = 9. gcd(24,9) = 3, and so z* = c = 8: each z cycle gcd(c,z) 

includes eight of the 24 pcs in the chromatic system. (Again this claim 
must be induced from the figure. The ordered content of the z axis begin- 
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ning at the southwest corer of 9c is as follows: <10, 1, 16, 7, 22, 13, 4, 
19, 10>.) There are gcd(24,9) = 3 distinct z axis-cycles, which partition 
the 24 pitch-classes. 

Retreating by one level of abstraction, consider now the cyclic features 
of Figure 8 (p. 14), where c = 3x + 3, and the three step intervals <x, y, 
z> are <x, x+1, x+2>. c = 3x + 3 = 3 (x+l) = 3y, and so y = c. Since y 

evenly divides c, it follows that gcd(c,y) = y, and so y* = c = 3. This 
Y 

explains why there are exactly three distinct elements in each column of 
the matrices in Figures 8 and 9. The significant point here is that the triple 
periodicity associated with the second step-interval is proper to the under- 
lying structure of Figure 8, and thus the inclusion of an octave-trisecting 
interval, acoustically equivalent to a tempered major third, is common to 
all parsimonious trichords. As for the number of distinct columns, there are 
gcd(c,y) = y. That is: there is one y-axis co-cycle for each degree of sepa- 
ration between the second and third pitch-class in the prime form of Q'. 

In contrast, the remaining step-intervals are divisors of c only under 
limited conditions. c is co-prime with x (the first step-interval) unless x 
is a multiple of one of c's divisors, 3 or x + 1. x cannot be a multiple of x 
+ 1; thus c and x are co-prime unless x is an integral multiple of 3, i.e., 
there is some positive integer n such that 3n = x. If so, then c = 3(3n) + 3 
= 9n + 3, in which case c is congruent to 3 modulo 9. The smallest exam- 
ples of such systems are c = { 12 (N.B.), 21, 30}. 

Of the systems portrayed in Figure 9, only Figure 9a (p. 15), where c 
= 12, meets this condition, and consequently it is only here that the x axis 
partitions its pcs into co-cycles rather than exhausting them in a single 

12 
cycle. In this case, x = 3, gcd(c,x) = 3, and x* = = 4. Each x axis 
thus contains four distinct pcs, and there are x = 3 distinct x axes. (In stan- 
dard terms, of course, what we have here is the partition of the aggregate 
into three diminished seventh chords.) By contrast, in Figures 9b and 9c, 
neither c = 18 nor c = 24 are congruent to 3 modulo 9. Consequently, c 
and x are co-prime, and so there is only a single x axis that exhausts the 
system of 18 or 24 pcs. 

A similar situation holds for the relationship of c to the third step-inter- 
val. x + 2 cannot be a multiple of x + 1, and so, in parallel with the case 
of the x axis just described, c and x + 2 are co-prime unless x + 2 is an 
integral multiple of 3, i.e., there is some positive integer n such that 3n - 
2 = x. In such cases, c = 3(3n - 2) + 3 = 9n - 3. That is, c _ 6 modulo 9. 
The smallest such systems are c = { 6, 15, 24}. Of the systems portrayed 
in Figure 9, only Figure 9c, where c = 24, meets this condition, and con- 
sequently it is only here that the z axis partitions its pcs into co-cycles 
rather than exhausting them in a single cycle. By contrast, in Figures 9a 
and 9b, neither c = 12 nor c = 18 are congruent to 6 modulo 9, and so c 
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and z are co-prime, and there is only a single z axis which exhausts the 
system of 12 or 18 pcs. 

A practical demonstration of the features discussed in this section is 
provided in the pioneering microtonal treatise of Alois Haba (1927), 
which systematically explores the generative powers of intervals in both 
quarter-tone (c = 24) and third-tone (c = 18) systems (where "tone" is 
taken in the sense of "whole tone"). In his discussion of the quarter-tone 
system, Haba notes that the "neutral third," equivalent to 7/24 of an 
octave, generates all 24 pitch-classes. In contrast, Haba writes that the 
interval "a quarter-tone higher than a major third [i.e. 9/24 of an octave] 
leads only as far as an octachord [Achtklang]. This octachord is com- 
posed of the symmetric partition of a major sixth.... Two transpositions 
of the octachord upward by a quarter-tone use the remaining 16 tones of 
the quarter-tone-scale" (1927, 166). Haba's three octachords are equiva- 
lent to the three distinct z-axis co-cycles discussed above in association 
with Figure 9c. In a subsequent chapter, Haba approaches the third-tone 
system from a similar perspective, observing that "the successive series 
of 5/3 steps forms a unified collection of 18 tones in the third-tone sys- 
tem, and indeed in a more broadly expanded distribution across a span of 
five octaves. The successive series of 18 seven-third tones forms a col- 
lection spread across seven octaves" (202-203). Haiba's aggregate-com- 
pleting Nacheinanderfolgen are equivalent to the x and z axes of Figure 
9b. The perspective cultivated throughout this section provides a system- 
atic foundation for Haiba's observations. 

Figure 10 (p. 22) summarizes the work of this section by providing a 
table for calculating the cyclic periodicities for the chromatic systems 
that can host parsimonious trichords, as exemplified in the three matrices 
of Figure 9. The significant point to be carried out of this exposition is 
that the y axis, generated by the second step-interval, has a constant peri- 
odicity, and the number of y co-cycles varies with the size of the chro- 
matic system. Conversely, the x and z axes, generated by the first and 
third step-intervals respectively, have a variable periodicity, but the num- 
ber of x and z co-cycles is constant to within the modulo-3 congruence 
of c. The relevance of these findings, and particularly of the special sta- 
tus of the y axis, to progressions based on PLR-family operations will 
become apparent in Section 3. 

3.1. PLR-family Compounds 

We are now in a position to navigate the toroidal Tonnetz, in all its var- 
ious manifestations, using PLR-family operations as our vehicle. The 
maximal common-tone retention inherent to these operations insures 
that the cruise will be smooth, particularly when the Tonnetz is parsimo- 
nious. Our exploration will follow a systematic program, focusing on tri- 
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(a) (b) (c) (d) (e) 

x axis y axis z axis 

c mod-9 periodicity # co-cycles periodicity # co-cycles periodicity # co-cycles example 
(x*) (c/x*) (y*) (c/y*) (z*) (c/z*) 

0 c 1 3 c c 1 c=18 
3 (Fig. 9b) 

3 c 3 3 c c 1 c=12 
3 3 (Fig. 9a) 

6 c 1 3 c c 3 c=24 
3 3 (Fig. 9c) 

Figure 10: Cyclic Periodicities of Step Intervals of Parsimonious Trichords 



chordal progressions, or chains, generated by the recursive application of 
a pattern of PLR-family operations.'8 Where appropriate, chains will be 
viewed as segments of cycles. The basic cycle-classes formed by gener- 
ated PLR-family chains are few in number, and their relation to PLR- 
family operations is roughly analogous to the role of the chain of fifths 
(Sechterkette) in diatonic progressions: they constitute normative proto- 
types against which particular progressions, in all their variety and com- 
plexity, may be gauged. 

The ultimate goal of this investigation is the pragmatic one of explor- 
ing parsimonious voice-leading among consonant triads in a 12-pc sys- 
tem. Consistent with the framework established in Section 2, this famil- 
iar phenomenon is situated as a particular manifestation of a more 
general one: the behavior of parsimonious trichords in any pitch-class 
system that is suitably sized to host them. Some readers may be frustrated 
by this strategy, since it defers an encounter with music in systems that 
we care about, instead inviting contemplation of hypothetical musical 
systems whose sounds we may have difficulty imagining. Nowadays, of 
course, the pragmatic fallout of such a study, in the form of "microtonal 
universes," is readily available to composers, analysts, and listeners. 
From this viewpoint, the research presented in this paper reflects the deep 
influence of Gerald Balzano's classic study (Balzano 1980). Like Bal- 
zano, my motivations are not only compositional. They stem as well from 
an intuition, perhaps a credo, that insights into the properties and behav- 
ior of individual instances are furnished by studying the properties and 
behaviors of general phenomena which they represent. As inhabitants of 
a planet that sustains life, the value of exploring other planets, solar sys- 
tems, or galaxies for their life-sustaining properties, or lack thereof, po- 
tentially transcends the conceivable material benefits, extending to the 
self-knowledge that emerges from the differentiating context furnished 
by the Other.19 

We begin with some notations, definitions, and observations invoked 
throughout the rest of the paper: 

3.1.1. Notation of Compound Operations. A compound PLR-family 
operation is denoted as an ordered set of individual PLR-family opera- 
tions, enclosed in angled brackets. The operations apply in the order in 
which they appear in the set, from left to right. For example, in the com- 
pound operation <RPL>, R is applied, P is applied to the product of R, 
and L is applied to the product of R-then-P. 

3.1.2. T/I Equivalences of Compound Operations. All compound 
operations are equivalent to either transpositions or inversions, depend- 
ing on the cardinality of the ordered set. Compound operations of odd 
cardinality are inversions, those of even cardinality transpositions. This 
follows from the inversional status of PLR-family operations, together 
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with the group structure of inversion and transposition (see, e.g., Rahn 
1980, 52). 

3.1.3. Generators. A PLR-family compound is generated if it can 
be partitioned into two or more identical ordered subsets. The ordered 
subset, singly iterated, constitutes the generator of the compound. The 
compound can be expressed as Hn, where H is the generator and n counts 
its iterations in the compound. A generator of cardinality #H is classified 
as #H-nary (hence binary, ternary, etc.). For example, the compound 
<PRPRPR> is binary-generated, since it can be partitioned as <<PR> 
<PR><PR>>, and expressed as <PR>3. 

3.1.4. T/I Equivalences of Generators. The cardinality of a generated 
compound Hn is #H ? n. If either #H or n are even , then H" is a transpo- 
sition. In order for Hn to be an inversion, #H and n must both be odd. 
This follows from the observations made in 3.1.2 together with the mul- 
tiplicative properties of odd and even integers. 

3.1.5. Cycles. H generates a cycle if, operating on some trichord Q, 
there is some integer q* > 0 such that Hq* (Q) = Q. The smallest such 
value q* is the operational periodicity of H. It will also be useful on 
occasion to count the trichords that result from an H-generated cycle. 
That number, the trichordal periodicity of the cycle, is equivalent to 
#H q*. 

3.1.6. Tonnetz Representations of Cycles. Generators of odd cardi- 
nality are involutions: they retreat to their point of origin on the Tonnetz 
after two iterations. This is restated formally as Theorem 2 in the appen- 
dix, where a proof is offered. Generators of even cardinality, by contrast, 
are devolutions: they move perpetually away from their point of origin on 
the Tonnetz. Cycles are generated only when a modular congruence gov- 
erns the Tonnetz, in which case the generator has the same periodicity as 
the transpositional operation to which it is equivalent (cf. 3.1.4). These 
periodicities can be computed by first expressing the PLR-family gener- 
ator as a transposition operation T,, and then determining the periodicity 
of n in relation to the size of the chromatic system. For this second step, 
we will rely on the work carried out in Section 2.4 and summarized in 
Figure 10. 

3.2. Binary Generators 

Because the unary generators <L>, <P>, and <R> are involutions, the 
progressions that they generate are insufficiently varied to serve as com- 
pelling musical resources. Thus our exploration begins with binary gen- 
erators that pair distinct PLR-family operations. There are six such gen- 
erators, which group into three retrograde-related pairs: 

(1) <PR> and <RP>; (2) <LP> and <PL>; (3) <LR> and <RL>. 
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It has already been determined (cf. 3.1.2) that each binary operation is 
equivalent to some Tn. Each transpositional value n associated with a bi- 
nary operation is equivalent to a non-zero directed interval within the tri- 
chord that is the object of operation. To see why this is so, consider that 
each individual PLR-family operation alters one pitch-class in Q, and so 
each binary operation alters two pitch-classes in Q. It follows that the 
product of a binary operation shares at least one common pc with Q. The 
common-tone theorem for transposition (Rahn 1980, 108) dictates that if 
Q n T,(Q) > 0, then there is some {ql, q2} E Q such that q2 - q, = n. From 
this it follows that each binary PLR-family operation transposes Q by 
some interval internal to it. The transpositional values associated with the 
six binary operations are exactly the three step-intervals and their in- 
verses, +x, +y, and ?(x + y). 

Figure 11 (p. 26) matches directed intervals to their associated binary 
operations. The six directed intervals of Q are listed as transpositional 
values at (a). Their binary operation equivalents are shown at (b). The 
transpositional values are implemented on Q at (c). The binary operations 
are implemented at (d), where they are represented on the abstract Ton- 
netz as arrows leading out of Q. Each operation transposes Q by one posi- 
tion along the axis representing the step-interval with which it is associ- 
ated. (For example, the association between T, and <RP> is confirmed by 
the matrix position of <RP>(Q), one step rightward of Q along the x 
axis.) Consequently, the vertices of each resultant triangle at (d) are 
exactly the pitch-classes resulting from the associated transposition at 
(c). (For example, {x, 2x, 2x + y} appears both as the set of vertices of 
<RP>(Q) at (d) and as the result of T, (Q) at (c).) 

Note that inversely related step-intervals are associated with retro- 
grade-related operations. For example, the association of Tx with <RP> 
is complemented by an association of Tx with <PR>. More generally: 

THEOREM 3. For an ordered PLR-family operation set H and its retro- 
grade Ret(H), if H = Tp, then Ret(H) = Tp. 

A proof is given in the Appendix. 
Moving one step forward into the "middleground," we now examine 

these relations as they apply to the abstract parsimonious trichordal 
prime form Q' = {0, x, 2x + 1}, with directed intervals ?x, ?(x + 1), and 
+(x + 2). In general, these intervals represent six distinct values, with the 
lone exception that, if x = 1 and c = 6, then x + 2 = - (x + 2). This excep- 
tion aside, the six binary PLR-family operations produce six distinct tri- 
chords when implemented on Q'. 

Figure 12 (p. 27) translates Figure 11 into terms specific to parsimo- 
nious trichords. The transpositions at (a) are given in three forms: as pos- 
itive and negative generic step-intervals, as positive and negative step- 
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(a) (b) (c) 

<Tx > 
Tx <RP> {O,x,x+y} >{x, 2x, 2x+y 

T-x <PR> {O,x,x+y} >{-x, ,y} 

Ty <PL> 0, x +y} > ,x + y, x x+2y} 

<T-v > 
T_y <LP> (O,x, x+y} v >(-y,x-y,x} 

<Tx+y > 
Tx+y <RL> {0, x, x + y} >{x + y, 2x + y, 2x + 2y} 

T-x-y <LR> (O,x,x +y} y>{-x-y, -y, O 

(d) 

-x + 2y 2y x + 2y 2x + 2y 

Figure 11: Abstract Transpositional Equivalences 
for Binary Generators 



(a) (b) (c) 

Tx <RP> {0, x,2x+ 1 
x> 

){x, 2x, 3x+ 1 

< T2x+3 > 
T-x T2x+3 <PR> {0, x,2x 1 2 +> {2x+3,0,x+ 1 

Ty Tx+1 <PL> {0, x, 2x+ 1} >{x+ , 2x+ 1, 3x +2} 

<T2x+2 > 
T-y T-(x+l) T2x+2 <LP> {0,x,2x+} )>{2x+2,3x+2, x} 

<T2x+1> 
Tx+y T-(x+2) T2x+l <RL> {0, x, 2x+l >{2x+ 1,3x+ 1,x -1} 

<Tx+2 > 
T-x-y Tx+2 <LR> {0,x, 2x+1 >x+ 2,2x+2, 0 

(d) 

x+2 2x+2 3x + 2 x- 1 

x- 1 

Figure 12: Binary Generators and Parsimonious Trichords 
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Figure 13: Binary Chains on the Parsimonious Tonnetz 



intervals of the generic parsimonious trichord Q', and as positive values 
modulo 3x + 3. It is these latter values that generate the mappings at (c). 
Figure 12(d) transfers the label/arrow network from Figure 1 l(d) onto 
the parsimonious Tonnetz (cf. Figure 8). As with Figure 11, a comparison 
of the triangle vertices at (d) with the results of the transpositional map- 
pings at (c) confirms the associations of binary PLR-family operation to 
pc-transposition asserted at (a) and (b). 

3.3. Binary Chains and Cycles 

Having explored the transpositional behavior of binary operations 
singly iterated, we now study the chains generated through their recur- 
sive application. Figure 13 applies the six generators to Q'= {0, x, 2x+1 ), 
as represented on the parsimonious Tonnetz of Figures 8 and 12. Pursuant 
to Theorem 3, retrograde-related generators proceed inversely out of Q'. 
Consequently, any generator and its retrograde combine to form a single 
chain. For the sake of procedural economy, it will be useful to provide a 
unified label for each chain: invoking alphabetical precedence, the three 
binary-generated chains will be referred to as <LP>, <LR>, and <PR>. 

Each of the three chains represented on Figure 13 threads a space 
bounded by two parallel and adjacent axes. The <PR> chain, whose gen- 
erator is associated with the x interval, threads a pair of x axes and thus 
proceeds horizontally; the <LP> chain, associated with the y interval, 
threads a pair of y axes and thus proceeds vertically; and the <LR> chain, 
associated with the x + y = z interval, threads a pair of z axes and thus 
proceeds diagonally. These affiliations between binary chains, step inter- 
vals, and Tonnetz directions are constant to all realizations of the generic 
Tonnetz. 

In what sense are the chains of Figure 13 cyclic? With the <LP> chain, 
the cyclicity is readily apparent: both <PL>3, at the top of the figure, and 
<LP>3, at its bottom, are equivalent to Q', indicating that the operational 
periodicity of the <LP> chain is 3. (Note that this periodicity is proper to 
the parsimonious Tonnetz; were the chains traced on the generic Tonnetz 
of Figures 6 and 11, no such cyclicity would be evident.) With the other 
two chains, no such equivalences are apparent, and so these chains are 
not cyclic in the abstract. Once a specific integer value is assigned to x, 
however, the <LR> and <PR> chains become cyclic. For example, if x = 
3, then <PRPRPRP>(Q) = {3, x + 4, 2x + 4} at the figure's left edge is 
equivalent to <R>(Q) = {x, 2x + 1, 3x + 1 } just right of center: both tri- 
chords are equivalent to {3, 7, 10}. This indicates that the <PR> chain 
has an operational periodicity of 4. This periodicity does not hold, how- 
ever, if x is assigned a different value. It is proper to the Oettingen/Rie- 
mann Tonnetz. but not to the parsimonious Tonnetz of Figure 13, where, 
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(a) (b) (c) (d) 
Modulo operational chain-class trichordal pitch-class 

periodicity cardinality periodicity cardinality 
per co-cycle 

<LP> r 
3 c 6 6 <LP> 3 

c 3 c 3 2c 2c 
modulo9 3 3 3 

<PR> 
c0, 6 c 1 2c c 
modulo 9 

c=0,3 c 1 2c c 
modulo 9 

<LR> 
c =6 c 3 2c 2c 

modulo 9 3 3 3 

Figure 14: Periodicities and Cardinalities of Binary-Generated Cycles 

unlike <LP>, neither the <PR> nor the <LR> chain exhibits constant 
periodicity. 

Although variable, the operational periodicities of <PR> and <LR> for 
specific values of x can nonetheless be easily determined. To do so, we 
only need coast on the momentum of our labor from Section 2.4. Because 
binary operations are equivalent to step-interval transpositions, as dis- 
cussed in Section 3.2, the two necessarily have identical periodicities. We 
have already seen this for the case of the <LP> chain, whose operational 
periodicity of 3 derives from the triple periodicity of its associated step- 
interval y (cf. Figure 10(c), p. 22). The periodicities for <PR> and <LR> 
likewise transfer from that of their associated step-intervals, x and z, 
respectively. Figure 10(b) gives the value of x*, the periodicity of x mod- 
ulo c, and these values apply directly to the periodicity of <PR>: if c 
- {0,6} modulo 9, then the operational periodicity of <PR> is c; if c = 3 
modulo 9, the periodicity is ?. Figure 10(d) gives the value of z*, the 3. 
periodicity of z modulo c, and these values apply directly to the period- 
icity of <LR>: if c - {0,3 modulo 9, then the periodicity of <PR> is c; 
if c = 6 modulo 9, the periodicity is -. These periodicities are summa- 
rized in column (a) of Figure 14. 
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Other significant features of binary-generated cycles are directly in- 
ferrable from the foregoing. 

Cardinality of cycle-classes. When one of the chains on Figure 13 
(p. 28) is transposed, axes and thus trichords may be exchanged, but the 
class membership of the chain (<LP>, <PR>, or <LR>) is preserved. It is 
thus important to make an ontological distinction between specific cycles 
and the classes that they represent. This distinction leads us to ask how 
many distinct cycles belong to each class, i.e. what is the cardinality of 
that class. To answer this question, we begin by observing that each cycle 
engages two pitch-class axes, and each axis participates in two cycles. It 
follows that the cardinality of each binary-generated cycle-class is equiv- 
alent to the quantity of distinct pitch-class axes of that generator's step- 
interval associate, as given in Figure 10 (p. 22). This quantity equals -c, 
where c measures the chromatic system as in Def. (1), and q* is the pen- 
odicity of the binary generator as at Figure 14, column (a). This infor- 
mation is summarized in Figure 14, column (b). 

Trichordal periodicity. The trichordal periodicity of a generated 
cycle equals the product of operational periodicity times generator cardi- 
nality (cf. 3.1.5). In the case of binary generators, trichordal periodicity 
doubles operational periodicity. All <LP> cycles thus engage six tri- 
chords, but the trichordal periodicity is variable for the <PR> and <LR> 
cycles. This information is summarized in Figure 14, column (c) for each 
cycle-class. 

Pitch-class engagement. Consider a binary operator H associated with 
step-interval q, where q* represents the periodicity of q and hence of H. 

* If q and c are co-prime, q* = c (cf. 2.4). Then both axes threaded by 
an H-generated chain include the entire pc-aggregate. It follows that 
an H-generated chain engages all c pitch-classes of the chromatic 
system. 

* If, however, q and c share a common divisor greater than 1, then 
q* < c, and the c pitch-classes partition into co-cycles (cf. 2.4). The 
two q axes threaded by an H-generated chain thus have distinct pc- 
content. Since each of these axes has a periodicity of q*, it follows 
that an H-generated chain engages 2q* pitch-classes. Thus an <LP> 
cycle always engages a hexachord. (The prime form of this hexa- 
chord is {0, 1, x + 1, x + 2, 2x + 2, 2x + 3}, with step-intervals 
<1, x, 1, x, 1, x>.) Depending on the modulo 9 congruence of c, the 
<LR> and <PR> cycles either engage the entire pitch-class system, 
or 2 of that system. (In the latter case, the prime form of the set 
engaged by the cycle can be represented as { <<3n, 3n + 1 } for n 
0 to c with step intervals <1, 2 1, 2...>.) This information is sum- 
marized in Figure 14, column (d). 
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(a) (b) (c) 

<T3> <T3> 
Tx T3 <RP> {0,3, 7} >{3,6,10} C- > Eb- 

<T9> <T9> 
T-x T9 <PR> {0, 3, 7} >{9, 0, 4} C- > A - 

<T4 > <T4> 
Ty T4 <PL> {0,3, 7} >{4,7, 11} C- >E- 

<T8 > <T8 > 
T_y T8 <LP> {0,3,7} >{8, 11,3} C- >Ab- 

<T7> <T7> 
Tx+y T7 <RL> {0,3, 7} >{7, 10, 2} C- >G- 

<T5> <T5> 
T-x-y T5 <LR> {0,3, 7} >{5, 8, 0} C- >F- 

(d) 

5 8 11 2 

Figure 15: Binary Generators and Consonant Triads modulo 12 



In general, the smaller the periodicity of the step interval associated 
with an operation, the more economical is the pitch-class design of the 
cycle generated from that operation. The significance of this circum- 
stance for nineteenth-century harmony will become clear in Section 3.4. 

3.4 Binary Chains and Cycles in Modulo 12 

In this section, the properties of parsimonious trichords established 
above are studied as they apply to the object of historical and analytical 
interest, the consonant triad in a system of 12 pitch-classes. We begin by 
studying the six binary operations, singly iterated, as we did in associa- 
tion with Figure 12 (p. 27). Figure 15 provides a realization of Figure 12, 
with x = 3. This assignment immediately brings the familiar object and 
system into view. Q' = {0, x, 2x + 1 is realized as the consonant triad 
{0, 3, 7) = C minor, the step intervals <x, x + 1, x+ 2> as <3, 4, 5>, and 
the chromatic system 3x + 3 as the 12-pc system. The parsimonious Ton- 
netz becomes an equal-tempered version of the one discovered by Euler 
and Oettingen and propagated by Riemann (cf. Figure 9a). The triads 
produced by the six binary operations indicated on Figure 15 constitute 
a complete inventory of the minor triads that share a pitch-class with C 
minor. 

To explore the recursive properties of these operations, Figure 16 
(p. 34) transfers the three binary-generated chains of Figure 13 onto the 
Oettingen/Riemann Tonnetz. (These chains are somewhat re-positioned, 
in part for visual clarity.) Each of these three classes of triadic progres- 
sion is familiar from music of the nineteenth century, and each has dis- 
tinctive properties. 

The group structure of <LP> chains has been studied by Hyer (1989, 
1995), and some of their special qualities were explored from different 
perspectives in an earlier paper of mine (Cohn 1996, where I refer to a 
chain of this type as a "maximally smooth cycle") and in Lewin (1996, 
who classifies it as a "Cohn Cycle"). The particular <LP> chain thread- 
ing the vertical axes of Figure 16 is the one that is traversed in a down- 
ward direction in a passage from Brahms's Double Concerto that is mod- 
elled in Example 1 and that I have already studied in some detail (Cohn 
1996, 13-15). The matrix representation illustrates several significant 
features of <LP> cycles identified in my earlier paper: 

Set-class Non-Exhaustion. <LP> generates a cyclic progression of 6 
triads, a sub-group of the 24 triads. 

Limited pc engagement. Both engaged columns have a cyclic peri- 
odicity of 3, so that an <LP> cycle engages only 6 pitch-classes. The 
pc-set unites two adjacent IC-4 cycles (represented by the two y- 
axis columns) into a hexatonic set belonging to Forte-class 6-20.20 
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1 4 .........7 10 1 4 7 10 1 4 7 

9 3 Brahms 6 9 9 0 3 

Ab+/ / F+/ Beethoven 
/Ab- /D- / / 5 8 11 2 5 8 11 2 5 811 

IE+/ | I/ |Bb+ 
1 4 7 l 10 1 4 7 10 1 4 7 

9 0:- .......56 9 0 3 6 90Eb+ 

9 0 3 6 9 0 3 6 9 0 3 
Ab+/ | / | Ab+/ 

5 8 11 2 5 8 11 2 5 8 11 
E+/ ^ | Db+/ I < X I /Bb- 

1 - 4------ - 7 --------10 1 .-- 4 ---------7 10 1 4 7 
A 1 j XGb+ | Eb+ Gb+ A+ C+ 

Eb- C- Eb- F#- 
... ...... .... ------- 3. 6-----------0 3 6 9 0 3 

B+/ | X+^^ Schubert > 

5 8 11 2 5 8 11 2 5 8 11 

1 4 7 10 1 4 7 10 1 4 7 
A+ --- 

9 0 --------3 6 9 0 3 6 9 0 3 

Figure 16: Binary Chains on the Oettingen / Riemann Tonnetz 



(Fy ,|J J Lml J J 1> ,!J J J 

r #r r f / r r 
Example 1: Brahms, Concerto for Violin and Cello, 

Op. 102, First Movement, mm. 270-78 

6 66 J hh 6 #d ^ i 1 

Example 2: Schubert, Overture to Die Zauberharfe, opening Andante 

Multiple distinct cycles. The number of distinct <LP> cycles is equiv- 
alent to the number of distinct y axes: four. In my earlier paper, I 
refer to these four cycles as hexatonic systems, in reference to their 
limited pc-content. In the current context they are more appropri- 
ately referred to as sub-systems. 

The particular <PR> cycle threading the horizontal axes of Figure 16 
is the one that is traversed right-ward (in reference to the spatial layout of 
Figure 16) in Example 2, which models the Andante introduction of the 
overture to Schubert's opera Die Zauberharfe (1820).21 The three fea- 
tures proper to <PR> cycles are analogous to those identified above for 
<LP> cycles, and this analogy is reflected in the parallel description of 
them below: 

Set-class Non-Exhaustion. <PR> generates a cyclic progression of 8 
triads, a sub-group of the 24 triads. 

Limited pc engagement. Both engaged rows have a cyclic periodic- 
ity of 4, so that a <PR> cycle engages 8 pitch-classes. The pc-set 
unites two adjacent IC-3 cycles (represented by the two x-axis rows) 
into an octatonic set belonging to Forte-class 8-28. 

Multiple distinct cycles. The number of distinct <PR> cycles is 
equivalent to the number of distinct x-axes: three. These cycles can 
be referred to as octatonic sub-systems (cf. Lerdahl 1994, 132-33). 
Any <PR> cycle-segment is a (proper or improper) subset of one of 
the three <PR> cycles. 
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The situation with the <LR> cycle, which threads the diagonal axes of 
Figure 16, is entirely different. The three features noted for the <LP> and 
<PR> cycles have no analogue here. 

Set-class Exhaustion. The compound operation <LR> generates the 
entire group of 24 triads. 

PC-Aggregate Completion. Both engaged z-axis diagonals have a 
cyclic periodicity of c = 12, and an <LR> chain engages all 12 pitch- 
classes; 

One Single Cycle. There is a single <LR> cycle, of which any <LR> 
cycle-segment is a subset. 

The complete <LR> cycle is too long to sustain compositional interest 
under normal conditions. This is brought out by a thirty-four-measure 
passage which I have written about on two earlier occasions (Cohn 1991 
and 1992) from the second movement of Beethoven's Ninth Symphony 
(mm. 143-76) . From a starting point at C-major in the northeast corner 
of Figure 16, the passage obsessively whirls through <RL>9, traversing 
eighteen triads before halting at the nineteenth link, the A-major triad in 
the southwest corer. Even a squall of such velocity and force cannot pro- 
pel itself about the entire cycle. 

Nonetheless, the <LR> cycle has a more venerable legacy than the other 
binary-generated cycles. Singly iterated, <LR> transposes by perfect 
fifth, the transpositional value that preserves maximum pc-intersection 
between diatonic collections (as well as the interval that sports acoustic 
privilege). The <LR>-cycle was initially recognized in thorough-bass 
methods from the late seventeenth century as a gauge of modulatory dis- 
tance (Lester 1992, 215). In 1827, Johann Bernhard Logier recommended 
that young musicians learn to play the entire cycle at the pianoforte, "as 
it forms the groundwork on which may be constructed an almost infinite 
number of passages and variations." Logier's assessment of the cycle's 
properties is pertinent to the approach adopted here: 

We perceive, from the beginning to the end, not only a beautiful symme- 
try and regularity pervading the whole, but also a double union of inter- 
vals-two of them always remaining undisturbed.... the whole pro- 
gression forming a chain of harmony unequalled in any of our former 
exercises.22 

As these passages suggest, the entire cycle is less a model of a surface 
structure to be traversed in a single gesture than a compositional space 
which, like a city, becomes entirely known through an exertion of mem- 
ory across a set of partial explorations. In a more recent formulation 
directly related to the approach developed in this paper, Lewin (1987, 
180) notes that the 24 triads are generable by a single operation, MED, 
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(a) (b) (c) (d) 
= 12 operational chain-class trichordal pitch-class 

periodicity cardinality periodicity cardinality 
- 3 modulo-9 per co-cycle 

<LP> 3 4 6 6 

<PR> 4 3 8 8 

<LR> 12 1 24 12 

Figure 17: Binary-Generated Periodicities and Cardinalities Modulo 12 

which maps a triad to its diatonic submediant. The powers of MED orga- 
nize the 24 triads into a simply transitive group, a Generalized Interval 
System isomorphic with the <LR> cycle. In this sense, the <LR> cycle 
can be seen as a source for all triadic progressions. The <PR> and <LP> 
cycles emerge, among other routines, as patterned sub-groups of the 
<LR> cycle.23 

Figure 17, modelled after Figure 14, summarizes the properties of the 
binary-generated cycles modulo 12. Surveying the three cycles as an 
ensemble, what is most striking is the affinity between the <LP> (hexa- 
tonic) and <PR> (octatonic) cycles, whose periodicites and cardinalities 
are nearly identical, and the anomalous status of the <LR> cycle by the 
same standard. These affiliations are unexpected in the general context 
provided by Section 3.3, which emphasized the affinities of the <PR> and 
<LR> cycles, on the basis of their variable periodicities, and the anom- 
alous status of the <LP> cycle, on the basis of its uniquely constant peri- 
odicity. The section that now follows will suggest that the strong affinity 
between the <LP> and <PR> cycles in modulo 12 is accidental rather than 
inherent. In no other chromatic system is the affinity so strong. 

3.5. Hexatonic and Octatonic Analogues 

We begin by investigating the relatively simple case of <LP> cycles in 
systems other than modulo 12. In each pitch-class system that hosts par- 
simonious trichords, <LP> cycles have a constant operational periodicity 
of 3, trichordal periodicity of 6, and pitch-class cardinality of 6 (cf. Fig- 
ure 14, p. 30). Thus <LP> cycles are inherently hexatonic. The variable 
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property is the cardinality of the <LP> cycle-class, i.e. the number of dis- 
tinct hexatonic sub-systems. The 2c parsimonious trichords in a system 
of c pitch-classes partition into = c <LP> co-cycles. This yields four 6 3 
hexatonic sub-systems for c = 12, six sub-systems for c = 18, eight sub- 
systems for c = 24, and so forth. 

In my earlier paper, which studied the relationship among the four 
hexatonic sub-systems in the mod-12 system, I observed (Cohn 1996, 
23-25) that each sub-system shares pitch-classes with two other sub-sys- 
tems, and is pitch-class complementary to the remaining sub-system. On 
this basis, the ensemble of sub-systems is shaped into a four-element sys- 
tem at a higher level. I proposed a two-tier design, where both the six- 
element sub-systems and the four-element "hyper-system" that embeds 
them are Generalized Interval Systems (GIS) (Lewin 1987). Our current 
work suggests that the same two-tiered GIS design applies to <LP> 
cycles in all chromatic systems where they occur. The individual sub- 
systems, which I shall call hexatonic analogues, constitute GIS's whose 
elements are the six trichords of an <LP> cycle, and thus whose size is 
constant to all chromatic systems. The higher-level hyper-hexatonic 
analogue system, organized by pc-intersection among the sub-systems, 
constitutes a GIS whose size of c 

sub-systems varies with the chromatic 
cardinality. 

Figure 18 demonstrates the hyper-hexatonic-analogue system for c = 
18, using Haba's Dritteltonsystem pitch-class designations, which are 
inventoried at the top of the figure. (Haba uses + for 1/6 sharp, t for 1/3 
sharp, t for 2/3 sharp, and # for 5/6 sharp.) The 18 pitch-classes are 
arranged into 6 T6-cycles at the center of the figure. Each such cycle tri- 
sects the octave, and is thus acoustically equivalent to a tempered aug- 
mented triad modulo 12. The cycles are paired into six overlapping ovals 
which portray the six hexatonic-analogue pc sets. Each set is connected 
by an arrow to the hexatonic analogue sub-system of trichords for which 
it furnishes a pitch-class source. Each such sub-system is an <LP> cycle 
modulo 18, and each is connected directly, by shared "augmented triad," 
to two neighboring systems. A unique feature of this chromatic system is 
that the hexatonic sub-systems and the hyper-system share a cardinality 
of 6. This isomorphism, which arises from the equality of the variable c 
to the constant 6 when c = 18, presents some interesting compositional 
possibilities which I shall not explore in the current context. 

The <PR> (octatonic) sub-systems of modulo 12 generalize in a quite 
different way. Whereas proper <LP> sub-systems appear in all suitably 
sized chromatic systems, proper <PR> sub-systems appear only in those 
systems where c - 3 modulo 9. Even in these systems, the <PR> sub-sys- 
tems generalize differently than the <LP>. We have seen that <LP> sub- 
systems have a constant size but a variable quantity (cf. Figure 14). The 
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situation with the <PR> sub-systems is converse. The quantity of sub- 
systems is constant: the 2c parsimonious trichords of each system parti- 
tion into three <PR> sub-systems. The size of each <PR> sub-system is 
variable, engaging 2c trichords. Consequently, generalized <PR> sub- 3 
systems are not "octatonic" in the same sense that generalized <LP> sub- 
systems are hexatonic: they have a pc-cardinality of 8 only in case c = 12. 
The most salient property of the mod-12 octatonic that generalizes to 
modulo c is the step-interval pattern <1, 2, 1, 2... >. In this sense the term 
"1:2-analogue" (based on Lendvai 1971) would better accommodate the 
basis of the analogy than "octatonic analogue." I nonetheless retain the 
latter term in order to stress the positive aspects of the meta-analogy with 
"hexatonic analogue." 

Although, as we have seen, the <LR> cycle yields no proper sub- 
systems modulo 12, it does yield proper sub-systems in chromatic sys- 
tems congruent to 6 modulo 9, such as c = 15, 24, and so forth. In these 
cases, the <LR> sub-systems are structured in the same way as the <PR> 
sub-systems, in the sense that there are three sub-systems, each with a tri- 
chordal periodicity and pitch-class cardinality of 2c. Because of this 

3 
similar structuring, it makes sense to apply the term octatonic analogue 
to the <LR> as well as the <PR> sub-systems. 

Figure 19 demonstrates the hyper-octatonic-analogue system for c = 
24, using Haba's Vierteltonsystem pitch-class designations, inventoried 
in ascending order at the top of the figure. The 24 pitch-classes are parti- 
tioned into three T3-cycles of cardinality 8 at the center of the figure, 
which are paired by the ovals into octatonic-analogue collections of car- 
dinality 16. These collections furnish the pc content for the octatonic- 
analogue sub-systems of triads, equivalent to the <LR>-cycles, modulo 
24. 

c = 24, then, is an example of a system whose 2c parsimonious tri- 
chords partition into both hexatonic- and octatonic-analogue sub-sys- 
tems. The two sub-system classes are equivalent to two of the three 
binary-generated cycles, <LP> and (in this case) <LR>. The third binary- 
generated cycle, <PR> in this case, generates the entire set-class of 48 
parsimonious trichords, and thus its role in the c = 24 system is analogous 
to that described in Section 3.4 for the <LR>-cycle in the c = 12 system. 

Figure 20 (p. 42), which is cut from the same template as Figures 14 
and 17, summarizes the periodicities for a mod-24 quarter-tone system. 
The affinity between the <LP> and <PR> cycles of modulo 12 has been 
replaced by an affinity between <LP> and <LR>. Both feature attenuated 
periodicities and non-exhaustion of the trichord class and the pitch-class 
aggregate. But the degree of affinity is greatly weakened, as the period- 
icities and cardinalities diverge. This circumstance underlines the special 
nature of modulo 12 suggested at the end of Section 3.4. In no other chro- 
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(a) (b) (c) (d) 
= 24 operational chain-class trichordal pitch-class 

periodicity cardinality periodicity cardinality 
6 modulo-9 per co-cycle 

<LP> 3 8 6 6 

<PR> 24 1 48 24 

<LR> 8 3 16 16 

Figure 20: Binary-Generated Periodicities and Cardinalities Modulo 24 

matic system does the variable operational periodicity- so closely ap- 

proximate the constant periodicity 3. (Both c = 9 and c = 6 are deficient: 
c = 9 produces no octatonic-analogue sub-systems because 9 is congru- 
ent to 0 modulo 9; although c = 6 produces octatonic analogue sub-sys- 
tems under <LR>, its two (!) hexatonic sub-systems are not pitch-class 
distinct.) 

I imagine the hexatonic and octatonic sub-systems as objects in space, 
one fixed and one transient. As the transient object momentarily passes 
by the fixed one, their relationship becomes recorded, frozen in time like 
the objects in a photograph. An observer who knows the objects only 
through the recording is in no position to understand that their associa- 
tion is anything other than permanent and intrinsic. Our study of this phe- 
nomenon in the context of generalized chromatic systems unfreezes the 
moment, allowing us to see the accidental nature of the relationship, and 
thereby enhances our appreciation of the over-determined qualities of the 
integer 12. 

This concludes the inventory of binary operations and the trichordal 
progressions that they generate. We now turn our attention to ternary gen- 
erators, which are of a different nature because they are inversions rather 
than transpositions. 

3.6. Ternary Generators and LPR Loops 
We begin our study of ternary generators by demonstrating that, once 

certain rules of reduction are invoked, their numbers are constrained. The 
reduction process is facilitated by the concept of generator form. Gen- 
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erators that have identical order-position equivalences will be said to 
share an abstract form. Forms are designated by assigning the abstract 
tokens A, B, and C to the three distinct PLR-family operations in the 
order that they appear in the generator. Accordingly <LPLR> and 
<RPRL> are both of the form <ABAC>. 

Because two successive iterations of a single operation "undo" each 
other, ternary generators of the form <ABB> reduce to unary generators 
(<A(BB)> = <A>), and accordingly have no independent interest. Nei- 
ther do generators of the form <ABA>, since reiteration juxtaposes the 
two A's, triggering a chain of involutions that unravels the entire struc- 
ture: <ABA>2 = <AB(AA)BA> = <A(BB)A> = <AA> = To. Conse- 
quently, independent ternary generators are limited to the form <ABC>. 
The six realizations of this form correspond to the six orderings of the 
unordered set {L,P,R}. These six orderings are equivalent under retro- 
grade and rotation. We will view them as members of a single class of 
ternary chain whose canonical label, invoking alphabetic precedence, is 
<LPR>. 

To illustrate the involutional nature of ternary generators (cf. Theorem 
2), Figure 21 (p. 44) models a cycle of six triads on the Oettingen/Rie- 
mann Tonnetz. Selecting F minor as a starting point, we move clockwise 
through a semi- cycle, engaging R, P, and L in that order, and stopping at 
E major. Continuing clockwise from this point, the same three operations 
are engaged in the same fixed order, closing the cycle back to F minor. 
The compound operation represents <RPL>2. Regardless of starting triad 
or direction, the same set of triads is traversed, demonstrating the equiv- 
alence of the six orderings of {L, P, R}. I will refer to such structures 
generically as LPR loops. 

Two examples of LPR loops from nineteenth-century opera, both using 
the specific triads included in Figure 21, are presented in Examples 3 and 
4 (p. 45). Example 3 models the succession of triads in the cantabile sec- 
tion of "Ah si, ben mio," from Act III of Verdi's II Trovatore. Beginning 
in F minor, the first quatrain closes by tonicizing its relative major. The 
aria's second quatrain "mutates" to Ab minor, prolongs Fb major through- 
out its consequent phrase, repeats the text of the consequent phrase over 
a Db minor triad, and reaches a fermata over a V7 of D. The final qua- 
train of the cantabile then prolongs Db major. The six consonant triads 
traverse an LPR loop, although the loop does not close with a return to 
the initial F minor. 

Example 4 is the Engelmotiv from Wagner's Parsifal, in a transposi- 
tion that occurs in Amfortas's Prayer from Act III. The passage begins 
and ends on Db major, and rotates clockwise through the triads of Figure 
21, omitting Ab minor and Db minor. As the analysis beneath Example 4 
indicates, the omissions are accounted for by compound operations that 
"elide across" the omitted triads.24 
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Figure 21: LPR-loop around Ab/G# 

A significant feature of LPR loops is that their six triads share a single 
pitch-class, located at the center of the matrix representation. In Figure 
21, Ab/G# plays that role. The members of a loop furnish a complete ros- 
ter of the triads that include the shared pitch-class.25 It follows that there 
are twelve distinct LPR loops (one per pc), that each triad participates in 
three such loops, and that the three interlocking loops in which that triad 
participates furnish a complete roster of the triads with which it shares 
one or more pitch-classes. Figure 22 (p. 46) illustrates for the case of F 
minor. The figure is in the form of an interlocked set of "honeycombs." 
The circle at the center of each loop encloses the pitch-class common to 
all the triads in that loop. The entire structure of the twelve interlocked 
loops can be easily inferred by projecting outward from Figure 22.26 

Because of their common-tone properties, LPR loops furnish an ideal 
progression for consonantly supporting a single melodic pitch with di- 
verse harmony while maximizing voice-leading parsimony. Such pro- 
gressions, with their implication of inner action or turmoil beneath a 
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Ah! si ben mio... Ma pur, se.. ...le vittime... f 

...avro piu forte. ...resti fra le vittime... ...trafitto... 

...in ciel precederti... 

Example 3: Verdi, II Trovatore, Act III: Ah si b'en mio 

b bf^ T| I)fT^I r I hf #Xil I r n 
jetzt_ in gott - li-chem Glanz den Er - 16 - ser 

@ TIQ0 9 I; #<L <#R 

L P> < RP 

L R <PL> <RP> 

Example 4: Wagner, Parsifal, Act III: Engelmotiv 

placid and harmonious surface, were well suited to symbolize nineteenth- 
century notions about the relationship of the inner and outer worlds. 
Examples include the openings of Liszt's "II Penseroso" (Annees de 
Pelerinage, Deuxieme Annee, composed 1839), and of the Monk's Cho- 
rus from Verdi's Don Carlos. 

All of the LPR-loop properties identified here for mod-12 consonant 
triads also hold, mutatis mutandis, for parsimonious trichords in other 
systems, as can be seen by transferring the cyclic design of Figure 21 
onto the background grid first introduced in Figure 8 (p. 14). Further- 
more, analogous properties hold for any trichord in any system, minus 
the parsimonious voice-leading, as can be seen by transferring the same 
cyclic design on the background grid of Figure 6 (p. 10).27 This transfer- 
ability results from the odd cardinality of ternary generators, which 
causes them to involute, in contrast to the devolutionary nature (cf. 3.1.6) 
of binary generators, and of the quaternary generators that we now study. 
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Figure 22: Interlocking LPR-Loops 

3.7 Quaternary Generators 

Like ternary generators, quaternary generators reduce to a single form 
once operations that involute (either directly or across the boundaries of 
successive iterations) are eliminated and rotational equivalence is 
invoked. Forms with two sets of duplicate operations are eliminated 
either because the duplicates are juxtaposed and thus undo each other 
(<A(BB)A> = <AA> = To and <(AA)(BB)> = To), or because the gener- 
ator is itself binary-generated (<ABAB> = <AB>2). Thus, all indepen- 
dent quaternary generators include all three distinct operations, with a 
single operation represented twice. The two iterations of the duplicate 
operation can be neither adjacent (as in <(AA)BC>) nor maximally sep- 
arated (as in <ABCA>, whose reiteration causes <ABC(AA)BCA>), and 
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(a) (b) (c) (d) (e) (f) 

L <LPLR> <LP><LR> Ty T(x+y) T-(2y+x) Ti 

P <PLPR> <PL><PR> Ty T Tyx Tp 

R <RLRP> <RL><RP> Tx+y Tx T2x+y Tr 

Figure 23: Transpositional Equivalences of Quaternary Generators 

accordingly must be separated by two order positions. All quaternary 
generators that fit this description are equivalent to <ABAC> via rotation. 
The six generators that realize <ABAC> group into three rotation-related 
pairs, as follows: 

(1) <LPLR> and <LRLP>; (2) <PLPR> and <PRPL>; (3) <RLRP> and <RPRL>. 

A significant property of any quaterary generator is that the transpo- 
sition that it enacts is equivalent to the voice-leading interval produced 
by the moving voice when a single iteration of the duplicate operation is 
executed. For example, an operation with duplicate R, such as <RPRL>, 
is equivalent to T, . Thus a quaternary operation unfolds in the large 
the transpositional operation that its duplicate operation expresses 
in the small. 

Figure 23 demonstrates this "exfoliation" property. The three opera- 
tions, listed at (a), are represented as duplicates by a quaternary operation 
at (b). These are each partitioned into a pair of binary operations at (c), 
and converted to their associated T, values at (d) (cf. Figure 11, p. 26). 
The T, values at (d) are composed at (e) by summing sub-scripts, and the 
product is expressed in terms of a voice-leading interval at (f), following 
the equivalences established at Def. (5) in Section 1. A comparison of (f) 
with (a) demonstrates the correspondence of the transpositional value 
with the duplicate operation. Note that replacing an operation at (b) with 
its rotation (e.g. <LRLP> for <LPLR>) does not affect the result, since 
transposition operators commute and thus <LP><LR> = <LR><LP> (cf. 
Kopp 1995, 272-73). 

Figure 24a uses the the abstract Tonnetz (cf. Figure 6) to portray the six 
quaternary operations as they act on the generic prime-form trichord Q = 

47 



Figure 24a: Quaternary Generators on the Abstract Tonnetz 

{0, x, x + y} with step-intervals <x, y, -(x+y)>. Each of the three paths 
leading out of Q implements the first operation of the quaternary set, 
traversing one of the three edges. The paths then bifurcate, reuniting 
at the point that the operation is completed. For example, <PLPR> and 
<PRPL> both start along the northwest path out of Q, traversing the 
hypotenuse to P(Q). <PLPR> turns right and proceeds counter-clock- 
wise, while <PRPL> forks left and proceeds clockwise. Both operations 
terminate at Tp (Q) = Ty.x(Q) at the northwest corner of the figure. 

Figure 24b transfers the same design onto the Oettingen/Riemann Ton- 
netz, where p = 1, / = 1, and , = -2 . These voice-leading intervals are 
echoed as transpositional values: 

*To the south of Q', the duplicate L operations <LPLR> and <LRLP> 
transpose Q' = C minor to T/(Q) = Ti(Q) = C# minor; 
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Figure 24b: Quaternary Generators on the Oettingen / Riemann Tonnetz 

*To the northwest of Q', duplicate P operations <PLPR> and <PRPL> 
transpose Q' = C minor to Tp (Q) = T1(Q) = C# minor; 

*To the east of Q', duplicate R operations <RLRP> and <RPRL> 
transpose Q' = C minor to T,(Q') = T2(Q) = B, minor. 

Figure 25 (p. 50) presents the six operations of Figure 24b in a format 
that facilitates examination of individual voices. Rotationally related 
pairs occupy the same row. Pairs of generators are connected by arrows 
which indicate a particularly intimate voice-leading relationship: paired 
generators have identical C-voices, and each G-voice is T4-related to the 
Eb voice of its partner. One surprising aspect of this pair-wise partition 
of the generators is that it is not identical to the pair-wise partition on the 
basis of rotational equivalence (i.e., shared duplicate). What principles 
underlie these observations is still an open question, as are the potential 
compositional and analytic applications. Readers may enjoy exploring 
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Figure 25: Voice-leading Affinities among Quaternary Generators 



the aural kinship between these paired progressions, and between the 
chromatic sequences that they generate.28 

Having explored the transpositional behavior of quaternary operations 
singly iterated, we now study the progressions generated by their recur- 
sive application. Complete quaternary-generated cycles of triads are so 
lengthy as to be of negligible musical value and are impractical to rep- 
resent in a compact graphic space. Consequently, I will focus here on 
cycle-segments, or chains, which present one way to conceptualize the 
stepwise chromatic sequences favored by nineteenth-century composers. 
Figure 26 (p. 52) superimposes one chain of each rotation-class onto the 
generic Tonnetz. 

* <PLPR>, which represents a Tp sequence, proceeds from 5:00 to 
11:00, moving along the main diagonal in the same direction as its 
hypotenuse-traversing duplicate, P; 

* <LPLR>, which presents a T1 sequence, proceeds from 1:00 to 7:00, 
approximately in the same vertical direction as its duplicate, L; 

* <RLRP>, which presents a T, sequence, proceeds from 8:00 to 2:00, 
approximately in the same horizontal direction as its duplicate, R. 

It is characteristic of actual compositional settings that extended se- 
quences are heard not in terms of the continuous flow implied by Figure 
26, but rather as a series of terraces. Each terrace is individually unified, 
but the junction between them characteristically moves "across the bar- 
line," inaugurating a new iteration of the sequenced segment at a metri- 
cally marked position. Potentially any of the four operations in a quater- 
nary generator can assume the transitional (or external) role, leaving the 
remaining three operations to assume the role of coherently articulating 
each terraced region. 

A significant feature of quaternary generators is that these terraced 
regions tend to be coherent in terms of the binary and ternary chains dis- 
cussed in Sections 3.4 and 3.6. Figure 27 (pp. 54-57) illustrates this 
point, transferring a representative chain from Figure 26, <PLPR>, onto 
the surface of the Oettingen/Riemann Tonnetz in four different ways. The 
four representations have identical content, moving through the same 
series of triads, but their graphic inflections suggest four different ways 
of partitioning the chain into terraces. Each Tonnetz portrait is accompa- 
nied by a schematic notational realization in order to reinforce some of 
the observed qualities. 

* Partition (a) (p. 54): <... (PLP) R (PLP) R (PLP)...>. Each set of 
four triads joined by <PLP> constitutes a terrace unified by the 
<LP>-cycle or hexatonic constituency of its triads. R plays the role of 
effecting the "modulation" between neighboring hexatonic regions. 
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<LPLR> 

/ <PLPR> 

- 2y -x - 2y -2y x - 2y 2x - 2y 3x - 2y 

Figure 26: Quaternary Chains on the Abstract Tonnetz 

The structure is graphically portrayed as a series of unified upward 
(y-axis) motions, interrupted by a transitional left-ward jog. 

* Partition (b) (p. 55): <... P (LPR) P (LPR) P (LP... >. Each set of four 
triads joined by <LPR> constitutes a terrace abstractly unified by the 
LPR-loop constituency of its triads. In concrete musical terms, this 
unity is insured by the invariant pitch-class inherent to LPR-loops. 
The P operation external to <LPR> plays the role of "modulating" 
between adjacent LPR-loops. The modulation is marked by the dis- 
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placement of the invariant pitch-class that defines the region. (The 
voice bearing this pc is highlighted in the notational realization by 
registral placement.) The structure is graphically portrayed as a 
series of arcs veering northeast of the invariant pc, interrupted by a 
diagonal jog. 

* Partition (c) (p. 56): <... P) L (PRP) L (PRP) L (P... >. Sets of four 
triads joined by <PRP> constitute terraces unified by the <PR>- 
cycle or octatonic constituency of the triads. L plays the role of 
"modulating" between adjacent octatonic regions. The structure is 
graphically portrayed as a series of leftward (x-axis) motions, inter- 
rupted by a transitional upward jog. 

*Partition (d) (p. 57): <... PL) P (RPL) P (RPL) P...> An alternative 
set of LPR-loop segments, with the pitch-classes unifying the 
regions residing in a different voice than at partition (b). In this case, 
the loop is articulated via <RPL>. The Tonnetz portrays each region 
as an arc veering southwest of the invariant pc, which again is high- 
lighted in the soprano voice of the notational realization. 

The general design of Figure 27 holds for the other quaternary gener- 
ators, but with a single degree of attenuation: one of the four partitions 
articulates a series of segments of the <LR> chain. Since the 24 triads are 
united into a single <LR> chain, the terraces do not define harmonic 
regions in any obvious way. The design of Figure 27 also transfers to 
other parsimonious trichords in microtonal systems. For example, the 
quaternary generator <LPLR> mod-24 leads to a coherent set of terraces 
for all four partitions, two of which articulate LPR-loop regions unified 
by pitch-class invariance, the other two of which are articulated by hexa- 
tonic-analogue <LP> cycles articulated by <LPL>, and octatonic-ana- 
logue <LR> cycles articulated by <LRL>. 

This concludes our exploration of generated PLR-family chains in the 
abstract, and as they apply to consonant triads in the familiar case. Al- 
though there are a limited number of independent generators for even 
cardinalities larger than four, my preliminary investigation suggests that 
their exploration yields diminishing returns both theoretically and ana- 
lytically. 

4. Some Open Questions 

Although our tour of compound PLR-family operations has been 
densely packed, it has hardly exhausted the terrain. I conclude by sug- 
gesting several questions and topics that may reward further investiga- 
tion. My hope is that some of the investigators might be "microtonal" 
composers attracted to set-class consistency and smooth voice-leading, 
and analysts seeking to interpret the triadically based repertory of late 
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Romanticism (and perhaps also the fledgling microtonal repertory of our 
own century). The following comments start down some theoretical and 
historical paths, but pass by points of analytic interest as well. 

(1) Like the work presented here, Balzano (1980) adopts a group- 
theoretic approach to pitch-relations normally discussed in an acoustic 
framework, uses a version of the Tonnetz to represent these relations, and 
generalizes properties of c = 12 to other equal-tempered systems. The tri- 
adic features that Balzano generalizes differ from those presented here- 
his generalized triads have step-intervals <x, x + 1, x2 - x - 1> in a chro- 
matic system of size x2 + x-so that his generalized triads are not the 
parsimonious ones that have focused our attention here, nor do they in- 
habit the same set of chromatic systems. It seems worthwhile to explore 
the relationship between Balzano's generalization and mine, and what is 
gained and lost by each in relation to the other. 

(2) An alternative definition of "parsimony" might open up the cate- 
gory of parsimonious trichords. On the account adopted above, a trichord 
is parsimonious if its voice-leading is non-zero but minimal under L, P, 
and R. One alternative avenue that seems promising is to classify a tri- 
chord as parsimonious if its voice-leading is non-zero but minimal under 
two of the three PLR-family operations. This would allow not only P = 
1, l = 1, 7 = -2 with step-intervals <x, x + 1, x + 2>, but also p = 0, l = 1, 
z = -1 with step-intervals <x, x, x + 1>, and = 1, = 0, a = -1 with step- 
intervals <x, x + 1 , x + 1>. On this account, all chromatic systems pos- 
sess one parsimonious trichord-class.29 Unlike the parsimonious tri- 
chord-classes considered in this paper, the newly yielded trichords are 
inversionally symmetric, and maximally even in the sense of Clough & 
Douthett 1991. The new group includes, among others, the set of diatonic 
(024) triads in a mod-7 diatonic system, and the set of consonant (025) 
trichords in a mod-8 octatonic system. Furthermore, invoking a distinc- 
tion made by Lewin (1996), the former group are of the antithesis type, 
whereas this new group is of the generator type. One advantage of this 
expanded interpretation of parsimony is that it suggests a way to collapse 
Lewin's distinction, at least in the case of trichords. 

(3) The crooks in the arrows of Figure 11 and related figures suggest 
that compound operations proceed in multiple stages through a set of 
intermediate terms, rather than directly to their target triad. I included the 
crooks to facilitate the tracing of compound operations, but pedagogy 
should not be confused with ontology. The ontological problem is most 
generally framed in terms of a path/goal duality . Given some triadic pro- 
gression <C+, Ab+>, whose most economical PLR-family analysis is 
<PL>, is the progression to be intuited as a single motion C + -'PL Ab+, or 
as a pair of Gestalts C + -PC - --Ab+ whose median term is elided out? 
What relation holds between the two interpretations, and what is the sta- 
tus of C-? 
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Along the same lines, how can we choose between two equally eco- 
nomical analyses of a single progression, for example,f- <LP >E + and 
f_ <RPL>. E +? Furthermore, does economy always override other "pref- 
erence rules" in the assignment of a PLR analysis to a triadic progres- 
sion? Again to ground the question by example: is <PL> always and only 
the appropriate analysis for <C+, Ab+>, or are there circumstances under 
which some other descriptively accurate analysis would be considered 
more appropriate, for example, <LP>2, <RRPL>, <PRRL>, <PLRR>, 
or <RL>4? The problem is a general one inherent to the interpretation of 
relations on a two-dimensional matrix such as a map or a chessboard, and 
it shows up in nineteenth-century Tonnetz analyses (cf. note 24 above) 
and in other neo-Riemannian transformational accounts of triadic motion 
(e.g. Lewin 1992, Hyer 1995, Mooney 1996). 

(4) The final topic is a historical one. It is apparent that a group-theo- 
retic orientation toward musical materials and their relations did not 
arrive fully formed in the twentieth century, but rather emerged from ele- 
ments that had been long present, if not fully articulated or mobilized. 
What role do the over-determined triad and the over-determined Tonnetz 
play in this emergence? 

The responsiveness of the Tonnetz, designed to model acoustic rela- 
tions, to a group-theoretic model potentially furnishes a lever for prying 
apart the acoustic from the group-theoretic aspects of triadic progressions, 
and for exploring the cohabitation of a nascent and tacit group-theoretic 
perspective with an explicitly acoustic one in nineteenth-century har- 
monic theory. To what extent did nineteenth-century theorists unwittingly 
smuggle an implicitly group-theoretic orientation beneath the cover of an 
apparatus whose essentially acoustic nature they never doubted for a 
moment? Clues can be found not only in the writings of Tonnetz navi- 
gators, but also in the way that common-tone preservation and incre- 
mental voice-leading is treated by nineteenth-century theorists such as 
Reicha, Fetis, Marx, Hauptmann, Weitzmann, Helmholtz, Tchaikovsky, 
and Hostinsky. This investigation might give new meaning to the time- 
worn adage that "the seeds of the tonal system's destruction were sewn 
from within." What is suggested is that the sower is none other than the 
structure most emblematic of that system, the triad itself. The association 
of the triad with divinity and perfection as initially conceived by Lippius, 
and carried down through Schenker and beyond, suggests an allegorical 
interpretation which is best carried out by scholars trained in theology and 
the history of ideas. 
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APPENDIX 

The proofs for Theorems 2 and 3 use the formulas for composition of 
transposition and inversion provided in Rahn (1980, 52), translated into 
an ordered-set format as follows: 

(Fl) <Ta,Tb> = Ta+b; (F2) <TaI,Tb> = Ta+bI; 
(F3) <Ta,TbI> = Tb-al; (F4) <TaI, TbI> = Tb a 

To use these formulas, we will need to translate Lewin's convention for 
labeling inversions (see Def. (3)) into the index number convention used 
by Rahn. The translation proceeds as follows: 

(F5) = Tu+vI; (F6) TnI = I?. 

* * * 

THEOREM 2. Proof that, if #H is odd, H2 = To. 

(1) H = <Hi,H2 ... Hn>, where n is odd. 

H1 is an inversion, by virtue of being a PLR-family operation. The cardi- 
nality of <H2,.. . Hn> is even, and hence <H2,... Hn> is a transposition 
(cf. Section 3.1.2). Thus 

(2) H = <a,Tp>. 

A second iteration of H likewise can be analyzed as an inversion followed 
by a transposition, and so 

(3) H2= d<,Tp,;,Tq>. 

Although the inversional operations are identical in PLR terms, the inter- 
vening transposition causes the second inversion to invert around an axis 
Tp-related to that of the first inversion. Hence 

(4) c = a + p; d =b + p. 

The transpositional operations are likewise identical in PLR terms, and 
thus necessarily transpose by the same magnitude, but not necessarily in 
the same direction. Since one inversion operation intervenes between Tp 
and Tq, the trichord subject to Tq is inversionally related to the trichord 
subject to Tt,, and so q = -p. Thus: 
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(5) H2 - Tp>. 

(6) Ib= Ta+bI 

(7) <Ta+bI,Tp> = Ta+b+pI 

(8) H2 = <Ta+b+p+lII4=, T-> 

(9) Ib+P = T2p+a+bI 

(10) <Ta+b+pI,T2p+a+bI> = T(2p+a+b)-(a+b+p) =TP 

(II) H2 = <Tp,Ip 

(12) H2 = T0 

QED 

*t *i *c 

By translation via F5 

F2 

By substitution to (5) 

By translation via F5 

F4 

By substitution to (8) 
Fl 

THEOREM 3. Proof that, if ordered set H = Tp, and Ret(H) is the retro- 
grade of H, then Ret(H) = Tp. 

(1) If H = T,, then H can be partitioned into H transpositions (cf. 
3.1.2). 

(2) And so H = <Ta,Tb,..., T,,Tn>, where a + b +... m + n = p. 

(3) Each transposition Tq of H is comprised of two inversion opera- 
tions; hence Tq= <Tj'I,ITjl>. 

(4) Thus H = <<TaJIT,4I>,<Tb,TbI>,..., <T'I,TmI>,<TJ'IT,4">> 

(5) It follows from (3) that q = - q', via F4. 

(6) And so H = < Ta"-d, Tb"-b', Tm-m', Tn"-n'>. 

(7) Since (4) analyzes H to its atomic elements, it follows that 
Ret(H) = <<?TnI,TI>,<Tm4l J>,..., <Tb4I,TbJ>,<Ta4I,TJI>> 

(8) Via F4, Ret(H) = <T',_,,,,Tm_m,,",... Tb'-b",Ta'-a"> 

(9) It follows from (5) that q' - q" = -q. 

(10) Thus Ret(H) = < T,TnT, ... Tb,Ta> 

(I 1) It follows from (2) that -n - m...-b - a=-p. 

(12) Then Ret(H) = Tp-, via Fl 

QED 
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NOTES 

The work presented here has benefitted from sustained conversations and corre- 
spondence with David Clampitt, John Clough, Jack Douthett, David Lewin, and 
Michael Siciliano. Adrian Childs provided a helpful reading of the final draft. 

1. Throughout this presentation, "triad" restrictively refers to the class of harmonies 
that is more specifically denoted by the terms "consonant triad," "harmonic triad," 
"Klang," or "member of Forte-class 3-11." 

2. Lewin 1982, 1987. The first stages in the development of neo-Riemannian theory 
are traced in Kopp 1995, 254-269. 

3. Lewin 1992; Hyer 1989, 1995. The relation of these terms to those used by Rie- 
mann can be cause for confusion. Riemann's "Parallelklang" is equivalent to the 
Relative major or minor in current English usage; what we call a parallel relation, 
Riemann terms a "Variant." 

4. The term "parsimony" is used in this context in Hostinsky 1879, 106. In Schoen- 
berg's writings, the same principle is referred to as the "law of the shortest way." 
See Schoenberg 1983 (1911), 39. For a formulation of this "law" dating from the 
late seventeenth century, see Masson 1967 (1694), 47. 

5. See Dahlhaus 1990 (1968), 73-74, 86-87, 241. Beginning with (at latest) the eigh- 
teenth century, the normative status of common-tone retention and stepwise 
motion is not only statistical but cognitive: one conceives of them as occuring even 
when the actual leading of the "voices" violates them, e.g. when instantiations of 
the common or step-related pitch-classes are realized in different registers. 

6. There is a single exception: the 3-12 [048] class. In a certain sense, the exercise 
does not apply to this class, since those members of 3-12 that share common tones 
are not distinct from each other. In a different sense, we can view C,E,G) as 
holding two tones-it matters not which two-in common with its inversion 
around C (or around any other "even" pc), while the third voice "progresses" by 
the interval of zero semitones. Here the voice-leading is parsimonious indeed. And 
no money is spent by the dead. 

7. Definition (3) is from Lewin (1987, 51). For a more flexible definition of Q, see 
note 13 below. 

8. Other aspects of Figure 4 are intriguing and suggestive, although not pertinent to 
the current project. Compare the following trios of trichord-classes for their step- 
interval differences: {012, 027, and 036}; {013, 016, and 025 . Note also the mod- 
3 congruence of the step-interval differences of each trichord. For six of the tri- 
chord-classes, including the five that are TnI-invariant, the three step-interval 
differences are congruent to 0, modulo 3. 

9. But see Clough & Douthett 1991 and Agmon 1991, both of which identify special 
properties of the triad as an object in modulo-7 diatonic space. 

10. For a valuable recent history of the Tonnetz, see Mooney 1996. See also Vogel 
1993 (1975). 

11. Euler 1926 (1739), 319, 349. The Tonnetz was already implied, although not laid 
out in Euler's geometrically compact form, in Rameau's Nouveau Systeme de 
musique theorique of 1726. See Popovic 1992, 119, 127. 

A more remarkable harbinger of Euler's matrix is implied by the pitch-class 
names used in ancient Chinese music. A set of 65 bells from the Zeng state of the 
Marquis Yi, dating from 433 B.C. but only unearthed by archaeologists in 1978, 
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reveals a system of twelve pitch-classes per octave. The names and tonal functions 
of pitches, which are transmitted through inscriptions on each bell, indicate octave 
equivalence. The twelve pitch-classes are named by prefix-suffix combinations 
which constitute a 4x3 Cartesian product isomorphic with Euler's matrix. There 
are four prefixes, gong = C, zhi = G, shang = D, and yu = A, which are identical to 
four of the pentatonic degree syllables still in use in China. The three suffixes are 
0 = no transposition, jue = transpose upward by major third, and zeng = transpose 
upward by two major thirds. The following table, which transposes Euler's matrix 
(from Figure 5a) upward by perfect fifth, and then places Zeng syllables alongside 
the corresponding European pitch-class names, clarifies the isomorphism: 

C gong G zhi D shang A yu 
E gongjue B zhijue Ft shangjue Ct yujue 

Gt gongzeng ES zhizeng Bb shangzeng F yuzeng 

For information on the Zeng bells, see Falkenhausen 1993, especially Chapter 8, 
and Chen, 1994. 

12. This claim requires some elaboration in light of the recent dissertations of Kopp 
(1995) and Mooney (1996). In the context of Riemann's theory of functions, the 
PLR-family relations (where P = Riemann's Variant and R = Riemann's Parallel) 
modify one of the three functions. Kopp argues that Riemann's separately devel- 
oped system of musical syntax, which conceives of triadic relations in terms of 
Schritte and Wechsel, is not subordinated to the functional framework, but rather 
co-exists with it in a relationship of mutual autonomy. The syntactic system 
assigns different labels to PLR-family relations and conceives of them more 
dynamically than does the system of functions. Although Riemann was not much 
concerned with Tonnetz representations of the syntactic operations, Mooney none- 
theless argues that the system of Schritte and Wechsel is deeply intertwined with 
the geometry of the Table (see 236-268, esp. 266.) Yet Riemann never bestowed a 
privileged position to PLR-family operations in the context of his syntactic sys- 
tem, partly because he increasingly interpreted the objects in the table as tonics, 
and so triangular representations ceased to be relevant. 

13. "Pitch or pitch-class" because we have not yet committed the matrix to a modu- 
lar congruence. To make Figure 6 susceptible to a pitch-space interpretation, Def. 
(2) would need to be made more flexible as follows: "Q is a trichord {0, x, x + y} 
such that 0 < x < y." 

14. To my knowledge, the earliest recognition of the toroidal nature of an equally tem- 
pered version of the Tonnetz is Lubin 1974. I thank Judith Schwartz for recogniz- 
ing the relevance of this work to my research. 

15. John Clough and David Clampitt were the first to enumerate parsimonious tri- 
chords on the basis of their step-interval properties. Their insights were commu- 
nicated to me by Clough in a letter dated June 25, 1993. 

16. Weitzmann 1853, 23. An unbounded version of Figure 9a, implicitly projecting 
into a torus, was presented in Balzano 1980, 72. The x and y axes of Balzano's 
matrix are swapped in relation to Figure 9a; otherwise the structures are identical. 

17. For background, see Morris 1987,. 132. 
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18. This material builds on Hyer's explorations of the algebra and group structure of 
neo-Riemannian transformations, in "Tonal Intuitions" and "Reimag(in)ing Rie- 
mann." 

19. This dictum is axiomatic for theorists of personality, culture, and geo-politics. Its 
venerable roots are suggested by the following ancient allegory: "The bear went 
over the mountain to see what he could see. The other side of the mountain was all 
that he could see." 

20. Cohn 1996 cites a number of studies of 6-20; to this list should be added the more 
recent treatment in van den Toorn 1995: 123-142. 

21. Although composed for Die Zauberharfe, this music was initially published as the 
"Rosamunde Overture," under which title it is more familiar. 

22. Logier 1976 (1827), p. 38. I am grateful to Scott Burnham for recognizing the sig- 
nificance of Logier's treatise to my research. 

23. Michael Siciliano presents a compelling argument for the source status of the 
<LR> cycle in unpublished work which is currently in preparation as a disserta- 
tion. 

24. See Rothstein 1991 for an indication of the long reach of elisions in music-theo- 
retic writings. Sources particularly germane to invocation of elisions in the current 
context include Hauptmann 1991 (1853), 57, 160-161; Oettingen 1866, 145-48; 
and Hostinsky 1879, 103-05. 

25. Popovic 1992 refers to the set of pitch-classes that share triadic membership with 
some central pc as its "neighborhood." The triads of an LPR-loop are grouped 
together in relation to the central pc (although not necessarily arranged cyclically) 
by theorists who view triads as assemblies of acoustic consonances, rather than as 
directly generated entities. See Helmholtz 1954 (1862, 1877), 212 and Hostinsky 
1879, 67. 

26. The interlocking LPR loops correspond with results of experiments reported in 
Krumhansl and Kessler 1982 and Krumhansl 1990, Chapter 2. Krumhansl and 
Kessler asked subjects to rate the goodness of fit between a given pitch-class and 
a given key on the basis of acoustic input, and used that data to profile similarity 
relations among the 24 keys. Although the profile is best portrayed in four dimen- 
sions, their two-dimensional "flattening" of that figure-a rectangle implying a 
torus-is a rotated version of Figure 22. 

27. Similar structures are explored for mod- 12 trichords in Bennighof 1987 and Lewin 
1996. 

28. It is of historical interest that the P-duplicate operations in Figure 25 lead to Ct minor, 
but the L-duplicates lead to Db minor. This enharmonic distinction vestigially reflects 
an acoustic one. Recall that P-duplicate and L-duplicate operations lead to different 
Tonnetz locations in Figure 24. For many nineteenth-century theorists (and some 
modem ones as well, e.g. Vogel 1993 (1975)) the notational and locational distinc- 
tions would reflect an acoustic distinction of three syntonic commas. 

29. These were first enumerated by Clough and Clampitt in the same document re- 
ferred to in note 15 above. 
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